• Title/Summary/Keyword: Cognitive radio Communication

Search Result 336, Processing Time 0.028 seconds

An Energy-efficient MAC Protocol in Cognitive Radio Environment (Cognitive Radio 환경을 고려한 에너지 효율적인 MAC 프로토콜)

  • Kim, Byung-Boo;Rhee, Seung-Hyong
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.7 no.2
    • /
    • pp.81-91
    • /
    • 2008
  • In mobile wireless communications, there is a new approach that uses the lacking spectrum efficiently. A cognitive radio is a device that can changes its transmitter parameters based on interaction with the environment in which it operates. At present, the wireless communication standard for wireless device contains power-saving modes or energy efficient mechanisms which cuts off the power of transmitter and receiver for power-saving. However, in cognitive radio environment, every device has the Quiet Period for searching channel and existing energy-saving method is not appropriate to be adjust to cognitive radio environment. In this paper, we propose an energy-efficient MAC protocol of mobile device in cognitive radio environment and prove the improvement of proposed method.

  • PDF

A Comparison of Spectrum-Sensing Algorithms Based on Eigenvalues

  • Ali, Syed Sajjad;Liu, Jialong;Liu, Chang;Jin, Minglu
    • Journal of information and communication convergence engineering
    • /
    • v.13 no.4
    • /
    • pp.241-247
    • /
    • 2015
  • Cognitive radio has been attracting increased attention as an effective approach to improving spectrum efficiency. One component of cognitive radio, spectrum sensing, has an important relationship with the performance of cognitive radio. In this paper, after a summary and analysis of the existing spectrum-sensing algorithms, we report that the existing eigenvalue-based semi-blind detection algorithm and blind detection algorithm have not made full use of the eigenvalues of the received signals. Applying multi-antenna systems to cognitive users, we design a variety of spectrum-sensing algorithms based on the joint distribution of the eigenvalues of the received signal. Simulation results validate that the proposed algorithms in this paper are able to detect whether the signal of the primary user exists or not with high probability of detection in an environment with a low signal-to-noise ratio. Compared with traditional algorithms, the new algorithms have the advantages of high detection performance and strong robustness

Social Incentives for Cooperative Spectrum Sensing in Distributed Cognitive Radio Networks

  • Feng, Jingyu;Lu, Guangyue;Min, Xiangcen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.2
    • /
    • pp.355-370
    • /
    • 2014
  • Cooperative spectrum sensing has been considered as a promising approach to improve the sensing performance in distributed cognitive radio networks. However, there may exist some selfish secondary users (SUs) who are unwilling to cooperate. The presence of selfish SUs could cause catastrophic damage to the performance of cooperative spectrum sensing. Following the social perspective, we propose a Social Tie-based Incentive Scheme (STIS) to deal with the selfish problem for cooperative spectrum sensing in distributed cognitive radio networks. This scheme inspires SUs to contribute sensing information for the SUs who have social tie but not others, and such willingness varies with the strength of social tie value. The evaluation of each SU's social tie derives from its contribution for others. Finally, simulation results validate the effectiveness of the proposed scheme.

A Distributed Medium Access Control Protocol for Cognitive Radio Ad Hoc Networks

  • Joshi, Gyanendra Prasad;Kim, Sung Won;Kim, Changsu;Nam, Seung Yeob
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.1
    • /
    • pp.331-343
    • /
    • 2015
  • We propose a distributed medium access control protocol for cognitive radio networks to opportunistically utilize multiple channels. Under the proposed protocol, cognitive radio nodes forecast and rank channel availability observing primary users' activities on the channels for a period of time by time series analyzing using smoothing models for seasonal data by Winters' method. The proposed approach protects primary users, mitigates channel access delay, and increases network performance. We analyze the optimal time to sense channels to avoid conflict with the primary users. We simulate and compare the proposed protocol with the existing protocol. The results show that the proposed approach utilizes channels more efficiently.

Multi-Channel Allocation Scheme for Multi-Hop Transmission in Ad-hoc Cognitive Radio Networks (애드혹 인지 무선네트워크에서 멀티 홉 전송을 위한 멀티채널할당기법)

  • Kwon, Young-Min;Park, Hyung-Kun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.1
    • /
    • pp.35-41
    • /
    • 2017
  • To solve the shortage of radio spectrum and utilize spectrum resource more efficiently, cognitive radio technologies are proposed, and many studies on cognitive radio have been conducted. Multi-hop routing is one of the important technologies to enable the nodes to transmit data further with lower power in ad-hoc cognitive radio networks. In a multi-channel cognitive radio networks, each channel should be allocated to minimize interference to primary users. In the multi-hop routing, channel allocation should consider the inter-channel interference to maximize network throughput. In this paper, we propose multi-channel scheduling scheme which minimizes inter-channel interferences and avoids collision with primary users for the multi-hop multi-channel cognitive radio networks. The proposed scheduling is designed to determine both of routing path and channel selection. The performance of proposed channel allocation scheme is evaluated by the computer simulation in the aspect of capacity and collision rate.

Study on Frequency Selection Method Using Case-Based Reasoning for Cognitive Radio (사례기반 추론 기법을 이용한 인지 라디오 주파수 선택 방법 연구)

  • Park, Jae-Hoon;Choi, Jeung Won;Um, Soo-Bin;Lee, Won-Cheol
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.1
    • /
    • pp.58-71
    • /
    • 2019
  • This paper proposes architecture of a cognitive radio engine platform and the allowable frequency channel reasoning method that enables acquisition of the allowable channels for the military tactical network environment. The current military tactical wireless communication system is increasing need to secure a supplementary radio frequency to ensure that multiple wireless networks for different military wireless devices coexist, so that tactical wireless communication between the same or different systems can be operated effectively. This paper presents the allowable frequency channel reasoning method based on cognitive radio engine for realizing DSA(Dynamic Spectrum Access) as an optimal available frequency channel. To this end, a case-based allowable frequency channel reasoning method for cognitive radio devices is proposed through modeling of primary user's traffic status and calculation of channel occupancy probability. Also through the simulation of the performance analysis, changing rate of collision probability between the primary users' occupancy channel and the available channel acquisition information that can be used by the cognitive radio device was analysed.

BBA based Power Scaling Method in Cognitive Radio Technique for WPAN (WPAN을 위한 무선인지기술에서의 BBA 기반 전력할당기법)

  • Kim, Dae-Ik;Cho, Ju-Phil;Cha, Jae-Sang
    • Journal of Broadcast Engineering
    • /
    • v.14 no.1
    • /
    • pp.89-92
    • /
    • 2009
  • In this paper, we discuss the BBA based power scaling scheme in cognitive radio technique for WPAN system. We focus on Cognitive Radio environment which is currently ongoing standard procedure and is able to focus on future communication and show the transmitted power scaling of CR user. We suggest the available communication method of CR user, while it is simultaneously satisfying both minimum interference of PU(Primary User) and possible communication of CR user. The method is using the BBA, and we show several merits in face of received SINR. and we prove that CR vary its transmit power while maintaining a guarantee of service to primary users.

Biform Game Based Cognitive Radio Scheme for Smart Grid Communications

  • Kim, Sungwook
    • Journal of Communications and Networks
    • /
    • v.14 no.6
    • /
    • pp.614-618
    • /
    • 2012
  • Smart grid is widely considered to be a next generation power grid, which will be integrated with information feedback communications.However, smart grid communication technologies are subject to inefficient spectrum allocation problems. Cognitive radio networks can solve the problemof spectrumscarcity by opening the under-utilized licensed bands to secondary users. In this paper, adaptive cognitive radio spectrum sensing and sharing algorithms are developed for smart grid environments. Simulation results are presented to demonstrate the effectiveness of the proposed scheme in comparison with other existing schemes.

Distributed Coordination Protocol for Ad Hoc Cognitive Radio Networks

  • Kim, Mi-Ryeong;Yoo, Sang-Jo
    • Journal of Communications and Networks
    • /
    • v.14 no.1
    • /
    • pp.51-62
    • /
    • 2012
  • The exponential growth in wireless services has resulted in an overly crowded spectrum. The current state of spectrum allocation indicates that most usable frequencies have already been occupied. This makes one pessimistic about the feasibility of integrating emerging wireless services such as large-scale sensor networks into the existing communication infrastructure. Cognitive radio is an emerging dynamic spectrum access technology that can be used for flexibly and efficiently achieving open spectrum sharing. Cognitive radio is an intelligent wireless communication system that is aware of its radio environment and that is capable of adapting its operation to statistical variations of the radio frequency. In ad hoc cognitive radio networks, a common control channel (CCC) is usually used for supporting transmission coordination and spectrum-related information exchange. Determining a CCC in distributed networks is a challenging research issue because the spectrum availability at each ad hoc node is quite different and dynamic due to the interference between and coexistence of primary users. In this paper, we propose a novel CCC selection protocol that is implemented in a distributed way according to the appearance patterns of primary systems and connectivity among nodes. The proposed protocol minimizes the possibility of CCC disruption by primary user activities and maximizes node connectivity when the control channel is set up. It also facilitates adaptive recovery of the control channel when the primary user is detected on that channel.

Implementation and Measurement of Spectrum Sensing for Cognitive Radio Networks Based on LoRa and GNU Radio

  • Tendeng, Rene;Lee, YoungDoo;Koo, Insoo
    • International journal of advanced smart convergence
    • /
    • v.7 no.3
    • /
    • pp.23-36
    • /
    • 2018
  • In wireless communication, efficient spectrum usage is an issue that has been an attractive research area for many technologies. Recently new technologies innovations allow compact radios to transmit with power efficient communication over very long distances. For example, Low-Power Wide Area Networks (LPWANs) are an attractive emerging platform to connect the Internet-of-Things (IoT). Especially, LoRa is one of LPWAN technologies and considered as an infrastructure solution for IoT. End-devices use LoRa protocol across a single wireless hop to communicate to gateway(s) connected to the internet which acts as a bridge and relays message between these LoRa end-devices to a central network server. The use of the (ISM) spectrum sharing for such long-range networking motivates us to implement spectrum sensing testbed for cognitive radio network based on LoRa and GNU radio. In cognitive radio (CR), secondary users (SUs) are able to sense and use this information to opportunistically access the licensed spectrum band in absence of the primary users (PUs). In general, PUs have not been very receptive of the idea of opportunistic spectrum sharing. That is, CR will harmfully interfere with operations of PUs. Subsequently, there is a need for experimenting with different techniques in a real system. In this paper, we implemented spectrum sensing for cognitive radio networks based on LoRa and GNU Radio, and further analyzed corresponding performances of the implemented systems. The implementation is done using Microchip LoRa evolution kits, USRPs, and GNU radio.