• 제목/요약/키워드: Cogging Torque

검색결과 273건 처리시간 0.046초

영구자석전동기의 코깅토오크저감을 위한 민감도에 의한 형상 최적화 (Shape Optimization for Reduction of Cogging Torque in Permanent Magnet Motor by Sensitivity Analysis)

  • 박일한;이범택;한현교;한송엽
    • 대한전기학회논문지
    • /
    • 제39권12호
    • /
    • pp.1246-1252
    • /
    • 1990
  • In order to reduce the cogging torque in a permanent magnet motor, a method to optimize the shape of permanent magnet and iron pole is presented. Sine the cogging torque comes from the irregular system energy variation according to the rotor position, system energy variation is taken as object function and the object function is minimized to optimize the shape. The positions of permanent magnet surface and iron pole surface are chosen as design parameters and sensitivity of object function with respect to the design parameter is calculated. The shape is changed according to sensitivity can be generated by methods that exploit the FEM formulation. A numerical example shows that the cogging torque is reduced to about 10% of the original value.

  • PDF

민감도기법과 RSM을 이용한 대용량 BLDC 전동기 영구자석의 형상 최적화 (A Magnet Pole Shape Optimization of a Large Scale BLDC Motor Using a RSM With Design Sensitivity Analysis)

  • 신판석;정현구;우성현
    • 전기학회논문지
    • /
    • 제58권4호
    • /
    • pp.735-741
    • /
    • 2009
  • This paper presents an algorithm for the permanent magnet shape optimization of a large scale BLDC(Brushless DC) motor to minimize the cogging torque. A response surface method (RSM) using multiquadric radial basis function is employed to interpolate the objective function in design parameter space. In order to get a reasonable response surface with relatively small number of sampling data points, additional sampling points are added on the basis of design sensitivity analysis computed by using FEM. The algorithm has 2 stages: the first stage is to determine the PM arc angle, and the 2nd stage is to optimize the magnet pole shape. The developed algorithm is applied to a 5MW BLDC motor to get a minimum cogging torque. After 3 iterations with 4 design parameters, the cogging torque is reduced to 13.2% of the initial one.

회전자 구조에 따른 브러시리스 모터 편심 특성 분석 (Analysis of the Eccentric Characteristics of the Brushless Motor by the Rotor Structure)

  • 손병욱;이주
    • 조명전기설비학회논문지
    • /
    • 제24권12호
    • /
    • pp.156-163
    • /
    • 2010
  • The brushless motor is getting widely applied to the automotive component with the advantage of the high efficiency, high reliability and etc.. Most of the motor applications require the low vibration and acoustic noise. The cogging torque is the one of the main cause of the noise and vibration. The step-skewed rotor is used to reduce the cogging torque. We analyze the characteristics of the step-skewed rotor and non skewed rotor with the same stator by using 2-dimensional FEM. And then we analyze the characteristics variation according to the rotor eccentricity. The prototype is made and tested. As the results, the step-skewed rotor structure reduce the cogging torque and local radial force but it is more sensitive to rotor eccentricity.

코깅토크 저감에 의한 BLDC Fan & Motor의 공진 소음 개선에 관한 연구 (Study on the Noise Reduction of BLDC Fan Motor by Cogging Torque Reduction)

  • 신현정;이은상
    • 전기학회논문지
    • /
    • 제62권9호
    • /
    • pp.1217-1222
    • /
    • 2013
  • It is very important to diminish noise source of electric motor systems that are used for home appliance area. We have studied on the noise reduction of BLDC motor, mainly focusing on reducing noise source from cogging torque. This noise source causes resonance of fan & motor systems. This study showed that the higher harmonic component of the cogging torque was the main factor for noise generation. Therefor, to reduce noise of bldc motor for refrigerator, this study suggested peanut shaped magnet which surface flux has similar sinusoidal wave form.

Spoke type 모터의 코깅토크 저감을 위한 노치설계 (Design Notch to reduce Cogging Torque of Spoke type Motor)

  • 한광규;강규홍;안영규;이동엽;김규탁
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 추계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.86-88
    • /
    • 2007
  • By reason of variation magnetic field, cogging torque is generated. Cogging torque of Spoke type motor is bigger than other type permanent magnet motor. So, this paper presents a design notch on stator and variation rotor shape to reduce cogging torque of Spoke Type motor. Through Fourier formulation of magnetic field on air gap, we found position of notch. The validity of the proposed design is confirmed with FEM analysis method.

  • PDF

회전자의 형상 변화에 의한 SRM의 Cogging Torque 저감 설계 (Rotor Shape Design to Decrease the Cogging Torque in SRM)

  • 김동석;박관수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 B
    • /
    • pp.780-782
    • /
    • 2001
  • SRM은 회전자의 구조가 간단하고 간단한 제어장치로 구동이 가능한 장점이 있지만 Cogging Torque로 인한 소음, 진동, 토크리플 등으로 인해 SRM의 안정화 운전에 장애가 되는 단점이 있다. 이를 제거하기 위한 방법으로는 외부회로에 제어기를 도입하여 전류파형을 조절하는 방법이 있으나 이 경우 고가의 복잡한 정밀제어기를 부착해야한다. 본 연구에서는 회전자의 형상을 조절하여 Cogging Torque를 감소시키는 방법을 연구한다. 이를 위하여 유한요소법을 이용하여 설계변수의 민감도를 계산하고 최적화 기법을 사용하여 형상변경 실시를 반복하여 최적설계를 하고자 한다.

  • PDF

BLDC 전동기의 코깅토크 저감을 위한 고정자 설계 (The Stator Design of BLDC for reducing the Cogging Torque)

  • 유대일;임승빈;김기찬;원성홍;이주
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 B
    • /
    • pp.767-768
    • /
    • 2006
  • Cogging torque is produced in a permanent magnet machine by the magnetic attraction between the rotor-mounted permanent magnets and the stator. It is an undesired effect that contributes to the machines' output ripple, vibration, and noise. This paper presents the stator design for reducing cogging torque in the BLDC motor by using the DOE(Design of Experiments). The cogging torque is computed by using a two-dimensional finite element analysis.

  • PDF

Study on Reducing Cogging Torque of Interior PM Motor for Agricultural Electric Vehicle

  • Cho, Ju-Hee;Park, Yong-Un;Kim, Dae-Kyong
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • 제2권2호
    • /
    • pp.134-140
    • /
    • 2013
  • This paper proposes a new design of rotor shape of Interior Permanent Magnet Synchronous Motor (IPMSM) used for agricultural electric vehicle (AEV). The distribution of the residual magnetic flux density at the air gap is modified by rotor surface shape and V-type magnet angle. As a result, cogging torque and physical characteristic have been improved, and back electromotive force (back-EMF) of the suggested model has been improved to be closest to sine wave form compared to initial model. The validity of the proposed rotor shape optimization is confirmed by the manufactured IPM rotor core and measured the performance of the cogging torque.

IPM 모터의 코깅토크 저감을 위한 노치 최적화 (Optimizing Notch to reduce Cogging Torque of IPM motor)

  • 한광규;강규홍;안영규;이동엽;김규탁
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.880-881
    • /
    • 2007
  • By reason of variation magnetic field, cogging torque is generated. Cogging torque of IPM is bigger than other type permanent magnet motor. So, this paper presents a Optimizeing notch to reduce cogging torque of interior type permanent magnet(: IPM) motor. Through Fourier formulation of magnetic field on rotor, we found position of notch and manufactured armature that is designed by optimizing analysis. The validity of the proposed design is confirmed with experiments.

  • PDF

코깅토크 및 토크리플 저감을 위한 EPS용 영구자석 전동기 설계 특성 (Design Characteristics of PM Motor for Electric Power Steering Aimed at Cogging Torque and Torque Ripples Reduction)

  • 이상곤;김창기;김상훈;정유석;정상용
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.613_614
    • /
    • 2009
  • Electric power steering(EPS) has many attentions such as fuel consumption improvement, thus it has been widely adopted for automotive application in recent years. In the EPS system, torque vibrations are directly transferred through the steering wheel to the hands of the driver. Hence, the design of PM motors for the EPS should be performed in order to reduce torque ripples including cogging torque. In this paper, Surface mounted Permanent Magnet Synchronous Motor(SPMSM) is designed to reduce torque ripples and cogging torque at a same time for the EPS propulsion and the design results are verified with the experimental ones.

  • PDF