• Title/Summary/Keyword: Cogging Torque

Search Result 273, Processing Time 0.024 seconds

Development of Step Motor for Time Switch (Time Switch용 Step Motor 개발)

  • Kim, Chul-Ho;Lee, Woo-Suk;Seo, Young-Taek;Oh, Chul-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1147-1149
    • /
    • 2005
  • Time switch is widely used to reduce the energy loss by selecting the duration of daily-based operating pattern for the electrical apparatus. Driving force of the time switch is the single-phase step motor which has the starting torque due to the asymmetrical airgap. Cogging and total torque of the tapered-airgap motor is analyzed by finite element method.

  • PDF

Design and Analysis on Electromagnetic Vibration source of BLDC motor for Vibration r eduction (BLDC Motor의 전자기적 가진원 분석 및 진동저감 설계)

  • Song, Hyauk-Jin;Kang, Gyu-Hong
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1126-1128
    • /
    • 2005
  • In this paper, electromagnetic vibration soruce of BLDC motor is analyzed, and a method of reducing vibration is presented. The vibration sources of BLDC motor are cogging torque and commutation torque ripple. The effectiveness of the proposed method were verified with experiments on FFT analysis.

  • PDF

A Study on the Electrical Magnetic Excitation Force and Noise Characteristics in Motor of Interior Permanent magnetic Type (영구자석 매입형 BLDC 모터의 전자기적 가진력 및 소음특성에 관한 연구)

  • Ko, Hong-Seok;Eun, Hee-Kwang;Kim, Kwang-Joon;Shin, Hyoun-Jeong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1139-1146
    • /
    • 2000
  • The frequencies of principal noise in interior permanent motor originate form two sources. One is torque ripple that is composed of cogging torque, magnetic torque ripple and reluctance torque ripple. The other is induced by natural frequencies. In this paper, the torque ripple and its influence on noise was examined by theoretical analysis. Understanding relation of dynamic characteristics and noise, natural frequencies and mode shapes were obtained by experimentation and operational deflection shape was observed. Finally, the method of predicting frequencies of principal noise was proposed.

  • PDF

A Study on the Design of BLDC Motor Replacing Ferrite Magnet with Rare Earth Magnet (페라이트 자석을 희토류 자식으로 교체한 BLDC 전동기의 설계에 관한 연구)

  • Chung, Tae-Kyung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.4
    • /
    • pp.121-129
    • /
    • 2008
  • This paper deals with the design of BLDC motor replacing ferrite magnet with rare earth magnet. Electric machinery system using ferrite magnet motor is already widespread in large numbers. Electrical appliance makers have a tendency to adhere to existing system using ferrite magnet motors because of redesigning the whole system. This paper designs the rare earth magnet motor untouching the external system dimension and motor outer size. To do the design simply, finite element package is used iteratively To reduce the cogging torque effect and magnetic saturation, stator yoke shape and the groove of the end face of yoke are redesigned.

Stability Analysis of Transverse Vibration of a Spinning Disk with Speed Fluctuation (속도변동성분을 갖는 회전디스크의 횡진동 안정성 해석)

  • 신응수;이기녕;신태명;김옥현
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.1
    • /
    • pp.21-28
    • /
    • 2002
  • This paper intends to investigate the effects of speed fluctuation caused by the cogging torque in permanent magnetic motors on the stability of the transverse vibration for a spinning disk. Based on the Kirchhoff\`s plate theory and the assumed mode methods, a set of discretized equations of motion were derived for an annular disk rotating with a harmonically varying speed. Then, a perturbation method using the multiple time scales was employed and stability boundaries were determined explicitly in terms of the magnitude and frequency of speed fluctuation, a nominal sped and the modal characteristics of the disk. It is found that parametric resonance occurs at several speed ranges and a single mode or a combination of two modes are involved to cause instability. It is also observed that unstable regions become broadened as the spinning speed increases or two modes are combined in parametric instability. As numerical simulations, stability analysis of a conventional CD-ROM drive was performed. Results of this work can e used as guidelines for motor design and operations with low vibration.

Nonlinear Controller for the Velocity Tracking and Rejection of Sinusoidal Disturbances in Permanent Magnet Stepper Motors (영구 자석 스테퍼 모터의 속도 추종과 외란 제거를 위한 비선형 제어기)

  • Kim, Won-Hee;Gang, Dong-Gyu;Han, Jonh-Pyo;Chung, Chung-Choo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.3
    • /
    • pp.632-638
    • /
    • 2011
  • In this paper, a nonlinear controller is proposed to track the desired velocity and to cancel sinusoidal disturbances. The proposed method consists of a velocity tracking controller and internal model principles (IMPs). For the design of the velocity tracking controller, mechanical and electrical dynamic controllers are independently designed. For the mechanical dynamics, the velocity tracking controller generates the desired quadrature current to track the desired velocity. The current tracking controller is designed to guarantee the desired quadrature current and to regulate the direct current. Therefore, the proposed velocity tracking controller has a field-oriented control. Since the controllers of the mechanical and electrical dynamics are independently designed, the stability of the closed-loop system is demonstrated using passivity. Since both the cogging torque and DC current errors act as sinusoidal disturbances in PMSM, we use four add-on type IMPs that preserve the merits and performance of the pre-designed controller without sacrificing the closed-loop stability. The performance of the proposed method is validated via simulations.

Design of Permanent Magnet Type Wind Power Generators for Cogging Torque Reduction with Optimum Pole Arc Pitch Ratio (코깅토크 저감을 위한 최적 극호비를 갖는 영구자석형 풍력발전기의 설계)

  • Jang, Seok-Myeong;Kim, Jin-Soon;Ko, Kyoung-Jin;Choi, Jang-Young;Yoon, Gi-Gab
    • Proceedings of the KIEE Conference
    • /
    • 2009.04b
    • /
    • pp.38-40
    • /
    • 2009
  • In order to achieve a gearless construction of the wind energy conversion system(WECS), a low-speed generator should be used. Of the various candidate machine types, radial-field, multi-pole, permanent magnet, synchronous machines may be used for low-speed applications. So, this paper deals with the design of direct-coupled, multi-pole radial field machines with permanent magnet(PM) excitation for wind power applications for cogging torque reduction through the determination of optimum pole arc/pitch ratio. On the basis of an equivalent magnetic circuit method(EMCM) and a space harmonic method(SHM), an initial design is performed considering restricted conditions. And then, a detailed design is made using a non-linear finite element analyses(FEA). Finally, test results concerning generating characteristics are given to confirm the validation of the design.

  • PDF

Minimization of a Cogging Torque for an Interior Permanent Magnet Synchronous Machine using a Novel Hybrid Optimization Algorithm

  • Kim, Il-Woo;Woo, Dong-Kyun;Lim, Dong-Kuk;Jung, Sang-Yong;Lee, Cheol-Gyun;Ro, Jong-Suk;Jung, Hyun-Kyo
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.3
    • /
    • pp.859-865
    • /
    • 2014
  • Optimization of an electric machine is mainly a nonlinear multi-modal problem. For the optimization of the multi-modal problem, many function calls are required with much consumption of time. To address this problem, this paper proposes a novel hybrid algorithm in which function calls are less than conventional methods. Specifically, the proposed method uses the kriging metamodel and the fill-blank technique to find an approximated solution in a whole problem region. To increase the convergence speed in local peaks, a parallel gradient assisted simplex method is proposed and combined with the kriging meta-model. The correctness and usefulness of the proposed hybrid algorithm is verified through a mathematical test function and applied into the practical optimization as the cogging torque minimization for an interior permanent magnet synchronous machine.