• Title/Summary/Keyword: Cogging Process

Search Result 38, Processing Time 0.029 seconds

Optimal Design of an In-Wheel Permanent Magnet Synchronous Motor for mobile robot (로봇 구동용 In wheel 영구자석 동기전동기의 코깅 토크 저감을 위한 영구자석 최적 설계)

  • Shin, Dong-Joo;Yang, Byoung-Yull;Hwang, Kyu-Yun;Kwon, Byung-Il
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.688_689
    • /
    • 2009
  • This paper presents a multi-objective optimal design process for an in-wheel permanent magnet synchronous motor (PMSM) for high performance. In order to improve the characteristics of the PMSM such as the cogging torque, torque ripple and the back-EMF, the modified Taguchi method and the response surface method (RSM) are utilized. In addition, results of the proposed model are compared with the initial design and it is verified by 2D FEM.

  • PDF

Optimization of Magnet Pole of BLDC Motor by Experimental Design Method

  • Kim, Jee-Hyun;Kwon, Young-Ahn
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.3B no.2
    • /
    • pp.84-89
    • /
    • 2003
  • The finite element method (FEM) is typically used in the process of motor design. However, the FEM requires computation time, Therefore, decreasing the number of FEM simulations may also decrease the simulation cost. Several optimal design methods overcoming this problem have been recently studied. This paper investigates the optimal design of the magnet pole of a BLDC motor through reducing simulation cost. The optimization minimizes the magnet volume and limits the average and cogging torques to certain values. In this paper, the response surface methodology and Taguchi's table for reducing the number of FEM simulations are used to approximate two constraints. The optimization result shows that the presented strategy is satisfactorily performed.

A Study for the Optimum Design of Fan Motor In Refrigerator Using A Niching Algorithm and Characteristic Analysis Using The Finite E16men1 Method (F.E.M.을 이용한 냉장고용 FAN 모터의 해석과 Niching Algorithm을 이용한 최적 설계에 관한 연구)

  • Han, Dong-Kyu;Chung, Tae-Kyung;Jin, Yong-Sun
    • Proceedings of the KIEE Conference
    • /
    • 1999.07a
    • /
    • pp.214-216
    • /
    • 1999
  • This paper discussed an optimal designs of 2 pole fan motors in refrigerator using a Niching Algorithm. We applied a Niching method to multi-objective optimal design of air gap construct. This Niching genetic algorithm is called "Restricted Competition Selection"(RCS) that is suitable for real world problem such as shape or structural optimization of electromagnetic device. The finite element method being used for nonlinear numerical characteristic analysis is provided exact solution in the system. Through this process is reduced the cogging torque ripple in air gap.

  • PDF

FE Analysis for the Prediction of Void Closure on the Free Forging Process of a Large Rotor (대형 로터의 자유단조공정에서 기공압착 예측을 위한 유한요소해석)

  • Lee, K.J.;Bae, W.B.;Kim, D.K.;Kim, Y.D.;Cho, J.R.
    • Transactions of Materials Processing
    • /
    • v.16 no.2 s.92
    • /
    • pp.126-131
    • /
    • 2007
  • Voids in a large rotor are formed in solidification process of a cast ingot. The voids have to be eliminated from the rotor by a forming process, because they would became stress-intensity factors which suddenly fracture the rotor in the operation. Previous studies on void-elimination of a large rotor have mainly focused on finding the process variables affecting the void-closure. But the study on the amount of void closure in a large rotor has been very rare. This study was performed to obtain an equation which predicts the amount of void-closure in a forging process of a large rotor and to evaluate the availability of the void-closure equation through finite element analyses. Firstly, 2D FE analysis was carried out to find effects of time integral of hydrostatic stress and effective strain on void volume rate of a large rotor in the upsetting process for various diameters and shapes of void, and material temperature. From the 2D FE analysis, we found that effective strain was suitable for predicting the void-closure of a large rotor, because there was a constant relationship between void volume rate and effective strain. And a void-closure equation was proposed fur predicting void-closure of a large rotor in the upsetting process. Finally, ken the 3D FE analysis, the proposed void-closure equation was verified to be useful for upsetting and cogging processes.

Structural Design for Vibration Reduction in Brushless DC Stator

  • Jafarboland, Mehrdad;Farahabadi, Hossein Bagherian
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.5
    • /
    • pp.1842-1850
    • /
    • 2017
  • Reducing the noise and vibration of the BLDC motors is very essential for some special applications. In this paper, a new structural design is introduced to increase the natural frequencies of the stator in BLDC motors as increasing the natural frequencies can reduce the severe effects of the structural resonances, including high levels of noise and vibration. The design is based on placing a single hole on definite regions at the stator cross sectional area (each region contains one tooth and its upper parts in the stator yoke) in an optimum way by which the natural frequencies at different modes are shifted to the higher values. The optimum diameter and locations for the holes are extracted by the Response Surface Methodology (RSM) and the modal analyses in the iterative process are done by Finite Element Method (FEM). Moreover, the motor performance by the optimum stator structure is analyzed by FEM and compared with the prototype motor. Preventing the stator magnetic saturation and the motor cogging torque enhancement are the two constraints of the optimization problem. The optimal structural design method is applied experimentally and the validity of the design method is confirmed by the simulated and experimental results.

Design of In-Wheel Motor for Automobiles Using Parameter Map (파라미터 맵을 이용한 차량용 인휠 전동기의 설계)

  • Kim, Hae-Joong;Lee, Choong-Sung;Hong, Jung-Pyo
    • Journal of the Korean Magnetics Society
    • /
    • v.25 no.3
    • /
    • pp.92-100
    • /
    • 2015
  • Electric Vehicle (EV) can be categorized by the driving method into in-wheel and in-line types. In-wheel type EV does not have transmission shaft, differential gear and other parts that are used in conventional cars, which simplifies and lightens the structure resulting in higher efficiency. In this paper, design method for in-wheel motor for automobiles using Parameter Map is proposed, and motor with continuous power of 5 kW is designed, built and its performance is verified. To decide the capacity of the in-wheel motor that meets the automobile's requirement, Vehicle Dynamic Simulation considering the total mass of vehicle, gear efficiency, effective radius of tire, slope ratio and others is performed. Through this step, the motor's capacity is decided and initial design to determine the motor shape and size is performed. Next, the motor parameters that meet the requirement is determined using parametric design that uses parametric map. After the motor parameters are decided using parametric map, optimal design to improve THD of back EMF, cogging torque, torque ripple and other factors is performed. The final design was built, and performance analysis and verification of the proposed method is conducted by performing load test.

Analysis of Void Closure in the Upsetting Process of Large-Ingot (대형강괴 업셋팅공정의 기공압착 해석)

  • 박치용;조종래;양동열;김동진;박일수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.10
    • /
    • pp.1877-1889
    • /
    • 1992
  • Upsetting is performed in open-die press forging to deform metal in all directions in order to enhance soundness of a product and reduce directionality of properties caused by casting. It is necessary to ensure sufficient forging ratio for subsequent cogging operations and consolidate the void along the centerline. To obtain these benefits, the upper die shape (dome and dished shape) is considered as an upsetting parameter. Thermo-viscoplastic finite element analysis has been carried out so as to understand the influence of upper die shape on the effective strain, hydrostatic stress and temperature in the upset-forged ingots without internal defects. The analysis is focused on the investigation into internal void closure in ingots with pipe holes and circular voids. The computational results have shown that the volume fraction of the void is independent of the circular void size and the closure of internal voids is much more influenced by the effective strain than the hydrostatic stress around the void. It is finally suggested that the height reduction must be over 35% for consolidation of internal voids.

Forging of 1.9wt%C Ultrahigh Carbon Workroll : Part II - Void Closure and Diffusion Bonding (1.9wt%C 초고탄소 워크롤 단조 공정 : Part II - 기공압착 및 확산접합)

  • Kang, S.H.;Lim, H.C.;Lee, H.
    • Transactions of Materials Processing
    • /
    • v.22 no.8
    • /
    • pp.463-469
    • /
    • 2013
  • In the previous work, a new forging process design, which included incremental upsetting, diffusion bonding and cogging, was suggested as a method to manufacture 1.9wt%C ultrahigh carbon workrolls. The previous study showed that incremental upsetting and diffusion bonding are effective in closing voids and healing of the closed void. In addition, compression tests of the 1.9wt%C ultrahigh carbon steel revealed that new microvoids form within the blocky cementite at temperatures of less than $900^{\circ}C$ and that local melting can occur at temperatures over $1120^{\circ}C$. Thus, the forging temperature should be controlled between 900 and $1120^{\circ}C$. Based on these results, incremental upsetting and diffusion bonding were used to check whether they are effective in closing and healing voids in a 1.9wt%C ultrahigh carbon steel. The incremental upsetting and diffusion bonding were performed using sub-sized specimens of 1.9wt%C ultrahigh carbon steel. The specimen was deformed only in the radial direction during the incremental upsetting until the reduction ratio reached about 45~50%. After deformation the specimens were kept at $1100^{\circ}C$ for the 1 hour in order to obtain a high bonding strength for the closed void. Finally, microstructural observations and tensile tests were conducted to investigate void closure behavior and bonding strength.