• Title/Summary/Keyword: Coffee recycling

Search Result 26, Processing Time 0.023 seconds

Overview for Coffee Grounds Recycling Technology and Future Concerns (커피 추출 폐기물 재활용 현황과 기술 동향 분석)

  • Hong, Hyun Seon;Kim, Yuli;Oh, Min Joo;Lee, Yu Mi;Lee, Hye Ji;Cha, Eun Seo
    • Journal of Korea Society of Waste Management
    • /
    • v.35 no.7
    • /
    • pp.587-599
    • /
    • 2018
  • The coffee grounds generated during the coffee extraction process contain several resources, but the technology for their recycling has not been commercialized yet, causing various environmental problems. Due to the recent increase in coffee consumption worldwide, the amount of coffee grounds produced has been continuously increasing, reaching more than 750 million tons. In Korea, about 120,000 tons of coffee waste are annually generated; however, most of them are landfilled or incinerated. Although there is still a shortage of coffee waste recycling technologies compared to the amount of coffee grounds produced, various recycling approaches are being actuated in many countries including Korea. In this study, the generation of coffee grounds at home and abroad, the status of coffee grounds recycling, and the associated technology development trends were investigated. The coffee grounds recycling has been studied in the fields of energy, adsorbent, construction, agriculture, and bio-foods. Research is most active in the energy and biotechnology areas; in particular, since the oil in the coffee grounds is valuable as a feedstock for biomass energy, the technology related to energy recovery is currently under development worldwide. Removed because confusing and unnecessary.

Analysis of Radon Reduction Effect Using Coffee Waste Mixture (커피 찌꺼기 혼합물을 활용한 라돈 저감 효과 분석)

  • Je, Jae-Yong;Kim, Gyeong-Min;Kim, Yul-Min;Lee, Hyun-Woo;Park, Ji-Woo
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.6
    • /
    • pp.855-860
    • /
    • 2021
  • Coffee is a popular beverage not only in Korea but also around the world, and its consumption is on the rise. As coffee consumption increases, coffee waste are also increasing, and recycling is attempted in various fields. However, these recycling methods require complex recycling processes and specialized skills. However, in this study coffee waste, agar powder, and powdered glue were mixed in an appropriate ratio and used as a cement building finishing material. This recycling method has a simple manufacturing method and was shown to improve indoor air quality by delaying radon emitted from cement walls for 2.5 hours with one application and 3.9 hours with two applications. In addition, it was shown that after applying the coffee waste mixture, it was applied twice to close the cracks that occurred during the drying process, thereby prevent the coffee waste from falling off the wall for aesthetic perfection.

Characteristics of Desorption and Recycling Capacity for Previously Adsorbed Silver into Waste Coffee Grounds (커피찌꺼기에 흡착된 은 이온의 탈착 및 재생 특성)

  • Jeon, Choong
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.24 no.3
    • /
    • pp.15-21
    • /
    • 2016
  • This experiment was conducted to test desorption and recycling characteristics for silver ion adsorbed into waste coffee grounds by using various desorbing agents such as nitric acid, ethylene diamine triacetic acid (EDTA) and nitrilo triacetic acid (NTA). It is appeared that the highest desorption efficiency for silver ions was obtained as about 97.8 % by 1.0 M of nitric acid solution. Also, in the case of less than 1.0 of the ratio of solid and liquid (S/L) (g/L), silver ions adsorbed onto coffee grounds was desorbed as about 98~100 %, and most of desorption process was completed within 60min. In addition, adsorption capacity of reused waste coffee grounds for silver ions was highly maintained as about 43.9 mg/g until the $2^{nd}$ cycle, as compared with the adsorption capacity with 45.9 mg/g of the adsorption capacity for virgin waste coffee grounds.

Measurement of Carbon Concentration and Dissolution Ratio in Molten Steel by the Mixing Conditions of Carbon Materials Using Coffee Grounds (커피박을 활용한 탄재 혼합 조건에 따른 용강 내 탄소의 농도 및 용해 효율 측정)

  • Kim, Gyu-Wan;Ryu, Geun-Yong;Kim, Sun-Joong
    • Resources Recycling
    • /
    • v.30 no.1
    • /
    • pp.77-82
    • /
    • 2021
  • Reduction of CO2 emissions is an important issue in the steel industry, and the research on carbon materials that can partially replace cokes is necessary to reduce CO2 emissions. Meanwhile, the biomass fuel contains some fixed carbon, and the carbon content in the biomass can be increased by torrefaction. As one of the biomass fuels, coffee grounds contains about 55 mass% of carbon, and its about 270,000 tons are landfilled and incinerated annually in Korea. In addition, research on the recycling process due to the increase in annual coffee consumption is required. In this study, the effect of temperature on the concentration of fixed carbon in coffee grounds was investigated during torrefaction. Moreover, the effects of mixing ratio of torrefied coffee grounds with cokes on the carbon concentration and dissolution efficiency in the metal sample were investigated.

Analyses for Current Research Status for the Coffee By-product and for Status of Coffee Wastes in Seoul (커피부산물의 최근 연구 동향 및 서울시의 커피찌꺼기 현황 분석)

  • Nam, Gnu;Kim, Min-suk;Ahn, Ji Whan
    • Journal of Energy Engineering
    • /
    • v.26 no.4
    • /
    • pp.14-22
    • /
    • 2017
  • Coffee consumption has been increased all around world as well as in South Korea. Coffee by-products occurred from the coffee consumption also have been rapidly increased, but the technology and methods to handle the by-product have not been much developed, resulting the severe environmental problems in soil and water. In order to solve this environmental problem, using the coffee by-product, eco-friendly and cheap methods for the recycling have been actively discussed and suggested. In this article, we discussed the types and characters of the coffee by-product and investigated the trend about the methods for utilizing the coffee by-product. In addition, we figured out the current status of coffee waste in Seoul, South Korea and discussed plans that Seoul government is working on to handle the coffee waste.

Overview of Coffee Waste and Utilization for Biomass Energy Production in Vietnam

  • Thriveni, Thenepalli;Kim, Minsuk;Whan, Ahn Ji
    • Journal of Energy Engineering
    • /
    • v.26 no.1
    • /
    • pp.76-83
    • /
    • 2017
  • In this paper, the carbon resources recycling of the overview of coffee waste generation in Vietnam. Since few years, there has been a significant research studies was done in the areas of coffee waste generation areas and also waste water generation from coffee production. The coffee residue (solid) and waste water (liquid) both are caused the underground water contamination and also soil contamination. These residues contain high organic matter and acid content leads to the severe threat to environment. In second stage of coffee production process, the major solid residue was generated. Various solid residues such as spent coffee grounds, defective coffee beans and coffee husks) pose several environmental concerns and specific problems associated with each type of residue. Due to the unlimited usage of coffee, the waste generation is high. At the same time, some researchers have been investigated the spent coffee wastes are the valuable sources for various valuable compounds. Biodiesel or biomass productions from coffee waste residues are the best available utilization method for preventing the landfill problems of coffee waste residues.

Synthesis of Nitrogen-Doped Porous Carbon Fibers Derived from Coffee Waste and Their Electrochemical Application (커피 폐기물 기반의 질소가 포함된 다공성 탄소 섬유의 제조 및 전기화학적 응용)

  • Dong Hyun Kim;Min Sang Kim;Suk Jekal;Jiwon Kim;Ha-Yeong Kim;Yeon-Ryong Chu;Chan-Gyo Kim;Hyung Sub Sim;Chang-Min Yoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.31 no.1
    • /
    • pp.57-68
    • /
    • 2023
  • In this study, coffee waste was recycled into nitrogen-doped porous carbon fibers as an active material for high-energy EDLC (Electric Double Layer Capacitors). The coffee waste was mixed with polyvinylpyrrolidone and dissolved into dimethylformamide. The mixture was then electrospun to fabricate coffee waste-derived nanofibers (Bare-CWNF), and carbonization process was followed under a nitrogen atmosphere at 900℃. Similar to Bare-CWNF, the as-synthesized carbonized coffee waste-derived nanofibers (Carbonized-CWNF) maintained its fibrous form while preserving the composition of nitrogen. The electrochemical performance was analyzed for carbonized coffee waste (Carbonized-CW)-, carbonized PAN-derived nanofibers (Carbonized-PNF)-, and Carbonized-CWNF-based electrodes in the operating voltage window of -1.0-0.0V, Among the electrodes, Carbonized-CWNF-based electrodes exhibited the highest specific capacitance of 123.8F g-1 at 1A g-1 owing to presence of nitrogen and porous structure. As a result, nitrogen-contained porous carbon fibers synthesized from coffee waste showed excellent electrochemical performance as electrodes for high-energy EDLC. The experimental designed in this study successfully demonstrated the recycling of the coffee waste, one of the plant-based biomass that causes the environmental pollution into high-energy materials, also, attaining the ecofriendliness.

Removal of Heavy Metal in Wastewater with Coffee Grounds (커피 찌꺼기를 이용한 폐수중의 중금속 제거)

  • Shin, Hyun-Gon;Kim, Choong-Gon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.22 no.2
    • /
    • pp.44-49
    • /
    • 2014
  • In order to remove the heavy metals from synthetic wastewater containing Pb, Cr, and Cd, the experiment was conducted with a variety of concentration and pH by using the washed and dried coffee grounds as adsorbent. Almost of the heavy metals were removed in thirty minutes and the removal efficiency was maximized to the 80 percents following the different pH conditions. Furthermore, in the case of Cr, the removal efficiency was declined with the increasing of pH. As a result of this study, coffee grounds is proved to be a very good adsorbent to remove the heavy metals.

The Antifungal Activity of Coffee Ground Compost Extract against Plant Pathogens (커피박 퇴비 추출물의 식물병원균에 대한 항균력 검정)

  • Kim, Min-Jeong;Shim, Chang-Ki;Kim, Yong-Ki;Park, Jong-Ho;Han, Eun-Jung;Kim, Seok-Cheol
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.24 no.4
    • /
    • pp.85-94
    • /
    • 2016
  • The purpose of this study was to characterize the coffee ground and its possibility to develop the antifungal activity. pH, EC, and Zn contents of the coffee ground from coffee shops were higher than those of commercial coffee ground, but there was no significant difference in $K_2O$, CaO, MgO, $Na_2O$, Mn contents. The antimicrobial activity of the water soluble extracts from the coffee shop and the commercial coffee ground were tested for six major plant pathogens, Rhizoctonia solani, Sclerotinia sclerotiorum, Fusarium oxysporum, Phytophthora capsici, Alternaria alternata, and Botrytis cinerea. The result showed that there was reliable antifungal activity against all of tested plant pathogenic fungi. The inhibition effects of coffee ground compost extract on the spore germination and zoospore formation were investigated. Water soluble extracts of the coffee ground compost mixture added with 10% sesame oil cake were significantly inhibited the growth of conidia germination of A. altanata and zoospore formation of P. capsici in vitro. For investigating the functional materials of coffee ground compost, it was measured the total polyphenolic compounds contents with 30 days interval during decomposing coffee ground for 90 days. The total polyphenolic content increased with decomposing periods, and it observed that the highest total polyphenolic content was $0.35{\pm}0.03mg\;GAE/g$ on the 90th day in the coffee ground compost added with 10% sesame oil cake.

Development of Mineral Admixture for Concrete Using Spent Coffee Grounds (커피찌꺼기를 활용한 콘크리트 혼화재의 개발)

  • Kim, Sung-Bae;Lee, Jae-Won;Choi, Yoon-Suk
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.3
    • /
    • pp.185-194
    • /
    • 2022
  • Coffee is one of the most consumed beverages in the world and is the second largest traded commodity after petroleum. Due to the great demand of this product, large amounts of waste is generated in the coffee industry, which are toxic and represent serious environmental problems. This study aims to study the possibility of recycling spent coffee grounds (SCG) as a mineral admixture by replacing the cement in the manufacturing of concrete. To recycle the coffee g rounds, the SCG was dried to remove moisture and fired in a kiln at 850 ℃ for 8 hours. Carbonized coffee grounds are produced as coffee grounds ash (CGA) through ball mill grinding. The chemical composition of the prepared coffee grounds ash was investigated using X-ray fluorescence (XFR). According to the chemical composition analysis, the major elements of coffee grounds ash are K2O(51.74 %), CaO(15.92 %), P2O5(14.39 %), MgO(7.74 %) and SO3(6.89 %), with small amounts of F2O3(0.66 %), SiO2(0.59 %) and Al2O3(0.31 %) content. To evaluate quality and mechanical properties, substitutions of 5, 10, and 15 wt.% of coffee grounds ash (CGA) were tested. From the quality test results, the 28-day activity index of CGA5 reached 80 %, and the flow value ratio reached 96 %, which is comparable to the minimum requirement for second-grade FA. From the test results of the mortar, the optimal results have been found in specimens with 5 wt-% coffee grounds ash, showing good mechanical and physical properties.