• Title/Summary/Keyword: Coexistence problem

Search Result 57, Processing Time 0.018 seconds

A Distributed Coexistence Mitigation Scheme for IoT-Based Smart Medical Systems

  • Kim, BeomSeok
    • Journal of Information Processing Systems
    • /
    • v.13 no.6
    • /
    • pp.1602-1612
    • /
    • 2017
  • Since rapidly disseminating of Internet of Things (IoT) as the new communication paradigm, a number of studies for various applications is being carried out. Especially, interest in the smart medical system is rising. In the smart medical system, a number of medical devices are distributed in popular area such as station and medical center, and this high density of medical device distribution can cause serious performance degradation of communication, referred to as the coexistence problem. When coexistence problem occurs in smart medical system, reliable transmitting of patient's biological information may not be guaranteed and patient's life can be jeopardized. Therefore, coexistence problem in smart medical system should be resolved. In this paper, we propose a distributed coexistence mitigation scheme for IoT-based smart medical system which can dynamically avoid interference in coexistence situation and can guarantee reliable communication. To evaluate the performance of the proposed scheme, we perform extensive simulations by comparing with IEEE 802.15.4 MAC protocol which is a traditional low-power communication technology.

Coexistence of plant species under harsh environmental conditions: an evaluation of niche differentiation and stochasticity along salt marsh creeks

  • Kim, Daehyun;Ohr, Sewon
    • Journal of Ecology and Environment
    • /
    • v.44 no.3
    • /
    • pp.162-177
    • /
    • 2020
  • Background: Ecologists have achieved much progress in the study of mechanisms that maintain species coexistence and diversity. In this paper, we reviewed a wide range of past research related to these topics, focusing on five theoretical bodies: (1) coexistence by niche differentiation, (2) coexistence without niche differentiation, (3) coexistence along environmental stress gradients, (4) coexistence under non-equilibrium versus equilibrium conditions, and (5) modern perspectives. Results: From the review, we identified that there are few models that can be generally and confidently applicable to different ecological systems. This problem arises mainly because most theories have not been substantiated by enough empirical research based on field data to test various coexistence hypotheses at different spatial scales. We also found that little is still known about the mechanisms of species coexistence under harsh environmental conditions. This is because most previous models treat disturbance as a key factor shaping community structure, but they do not explicitly deal with stressful systems with non-lethal conditions. We evaluated the mainstream ideas of niche differentiation and stochasticity for the coexistence of plant species across salt marsh creeks in southwestern Denmark. The results showed that diversity indices, such as Shannon-Wiener diversity, richness, and evenness, decreased with increasing surface elevation and increased with increasing niche overlap and niche breadth. The two niche parameters linearly decreased with increasing elevation. These findings imply a substantial influence of an equalizing mechanism that reduces differences in relative fitness among species in the highly stressful environments of the marsh. We propose that species evenness increases under very harsh conditions if the associated stress is not lethal. Finally, we present a conceptual model of patterns related to the level of environmental stress and niche characteristics along a microhabitat gradient (i.e., surface elevation). Conclusions: The ecology of stressful systems with non-lethal conditions will be increasingly important as ongoing global-scale climate change extends the period of chronic stresses that are not necessarily fatal to inhabiting plants. We recommend that more ecologists continue this line of research.

THE EXISTENCE, NONEXISTENCE AND UNIQUENESS OF GLOBAL POSITIVE COEXISTENCE OF A NONLINEAR ELLIPTIC BIOLOGICAL INTERACTING MODEL

  • Kang, Joon Hyuk;Lee, Jungho;Oh, Yun Myung
    • Korean Journal of Mathematics
    • /
    • v.12 no.1
    • /
    • pp.77-90
    • /
    • 2004
  • The purpose of this paper is to give a sufficient condition for the existence, nonexistence and uniqueness of coexistence of positive solutions to a rather general type of elliptic competition system of the Dirichlet problem on the bounded domain ${\Omega}$ in $R^n$. The techniques used in this paper are upper-lower solutions, maximum principles and spectrum estimates. The arguments also rely on some detailed properties for the solution of logistic equations. This result yields an algebraically computable criterion for the positive coexistence of competing species of animals in many biological models.

  • PDF

Adaptive Mitigation of Narrowband Interference in Impulse Radio UWB Systems Using Time-Hopping Sequence Design

  • Khedr, Mohamed E.;El-Helw, Amr;Afifi, Mohamed Hossam
    • Journal of Communications and Networks
    • /
    • v.17 no.6
    • /
    • pp.622-633
    • /
    • 2015
  • The coexistence among different systems is a major problem in communications. Mutual interference between different systems should be analyzed and mitigated before their deployment. The paper focuses on two aspects that have an impact on the system performance. First, the coexistence analysis, i.e. evaluating the mutual interference. Second aspect is the coexistence techniques, i.e. appropriate system modifications that guarantee the simultaneous use of the spectrum by different technologies. In particular, the coexistence problem is analyzed between ultra-wide bandwidth (UWB) and narrow bandwidth (NB) systems emphasizing the role of spectrum sensing to identify and classify the NB interferers that mostly affect the performance of UWB system. A direct sequence (DS)-time hopping (TH) code design technique is used to mitigate the identified NB interference. Due to the severe effect of Narrowband Interference on UWB communications, we propose an UWB transceiver that utilizes spectrum-sensing techniques together with mitigation techniques. The proposed transceiver improves both the UWB and NB systems performance by adaptively reducing the mutual interference. Detection and avoidance method is used where spectrum is sensed every time duration to detect the NB interferer's frequency location and power avoiding it's effect by using the appropriate mitigation technique. Two scenarios are presented to identify, classify, and mitigate NB interferers.

Cognitive Beamforming Based Smart Metering for Coexistence with Wireless Local Area Networks

  • Lee, Keonkook;Chae, Chan-Byoung;Sung, Tae-Kyung;Kang, Joonhyuk
    • Journal of Communications and Networks
    • /
    • v.14 no.6
    • /
    • pp.619-628
    • /
    • 2012
  • The ZigBee network has been considered to monitor electricity usage of home appliances in the smart grid network. ZigBee, however, may suffer from a coexistence problem with wireless local area network (WLAN). In this paper, to resolve the coexistence problem between ZigBee network and WLAN, we propose a new protocol constructing a cognitive smart grid network for supporting monitoring of home appliances. In the proposed protocol, home appliances first estimates the transmission timing and channel information of WLAN by reading request to send/clear to send (RTS/CTS) frames of WLAN. Next, based on the estimated information, home appliances transmit a data at the same time as WLAN transmission. To manage the interference between WLAN and smart grid network, we propose a cognitive beamforming algorithm. The beamforming algorithm is designed to guaranteeing zero interference to WLAN while satisfying a required rate for smart metering. We also propose an energy efficient rate adaptation algorithm. By slowing down the transmission rate while satisfying an imperceptible impact of quality of service (QoS) of the receiver, the home appliance can significantly save transmit power. Numerical results show that the proposed multiple antenna technique provides reliable communications for smart metering with reduced power comparing to the simple transmission technique.

A Coexistence Mitigation Scheme in IEEE 802.15.4-based WBAN (IEEE 802.15.4 기반 WBAN의 공존 문제 완화 기법)

  • Choi, Jong-hyeon;Kim, Byoung-seon;Cho, Jin-sung
    • Journal of Internet Computing and Services
    • /
    • v.16 no.3
    • /
    • pp.1-11
    • /
    • 2015
  • WBAN(Wireless Body Area Network) operating around the human body aims at medical and non-medical service at the same time. and it is the short-range communication technology requiring low-power, various data rate and high reliability. Various studies is performing for IEEE 802.15.4, because IEEE 802.15.4 can provide high compatibility for operate WBAN among communication standard satisfiable these requirements. Meanwhile, in the case of coexisting many IEEE 802.15.4-based WBAN, signal interference and collision are the main cause that is decreasing data reliability. but IEEE 802.15.4 Standard does not consider about coexistence of many networks. so it needs improvement. In this paper, To solve about this problem, identify coexistence problem of IEEE 802.15.4-based WBAN by preliminary experiments. and propose a scheme to mitigate the reliability decrease at multiple coexistence WBAN. The proposed scheme can be classified in two steps. The first step is avoidance to collision on the CFP through improving data transmission. The second step is mitigation collision through converting channel access method. Proposed scheme is verified the performance by performing comparison experiment with Standard-based WBAN.

Collision Avoidance Method for Coexistence between Relay-Based Multi-Hop UWB System (UWB기반 다중 홉 선박 네트워크간의 공존을 위한 충돌 회피 기술)

  • Kim, Jin-Woo;Park, Jong-Hwan;Lee, Seong Ro
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.8
    • /
    • pp.688-695
    • /
    • 2014
  • In a small wireless environment, such as your home or office, a various network using WiMedia PHY can be mixed. Because these networks operate independently for each application, data conflict can occur between adjacent networks. To avoid data conflict, the resource in a different time zone can be utilized. However, if devices in a network increase, available resources in the network decrease, and then the lack of resources necessary to provide service can occur. To solve this problem, we propose collision avoidacne scheme for coexistence of various UWB systems. In this paper, we evaluate the performance of the proposed scheme through simulation.

Research Trends in Wi-Fi Performance Improvement in Coexistence Networks with Machine Learning (기계학습을 활용한 이종망에서의 Wi-Fi 성능 개선 연구 동향 분석)

  • Kang, Young-myoung
    • Journal of Platform Technology
    • /
    • v.10 no.3
    • /
    • pp.51-59
    • /
    • 2022
  • Machine learning, which has recently innovatively developed, has become an important technology that can solve various optimization problems. In this paper, we introduce the latest research papers that solve the problem of channel sharing in heterogeneous networks using machine learning, analyze the characteristics of mainstream approaches, and present a guide to future research directions. Existing studies have generally adopted Q-learning since it supports fast learning both on online and offline environment. On the contrary, conventional studies have either not considered various coexistence scenarios or lacked consideration for the location of machine learning controllers that can have a significant impact on network performance. One of the powerful ways to overcome these disadvantages is to selectively use a machine learning algorithm according to changes in network environment based on the logical network architecture for machine learning proposed by ITU.

POSITIVE COEXISTENCE FOR A SIMPLE FOOD CHAIN MODEL WITH RATIO-DEPENDENT FUNCTIONAL RESPONSE AND CROSS-DIFFUSION

  • Ko, Won-Lyul;Ahn, In-Kyung
    • Communications of the Korean Mathematical Society
    • /
    • v.21 no.4
    • /
    • pp.701-717
    • /
    • 2006
  • The positive coexistence of a simple food chain model with ratio-dependent functional response and cross-diffusion is discussed. Especially, when a cross-diffusion is small enough, the existence of positive solutions of the system concerned can be expected. The extinction conditions for all three interacting species and for one or two of three species are studied. Moreover, when a cross-diffusion is sufficiently large, the extinction of prey species with cross-diffusion interaction to predator occurs. The method employed is the comparison argument for elliptic problem and fixed point theory in a positive cone on a Banach space.

Channel Selection for the Coexistence of Different Bandwidth Systems in TV White Space (TV 화이트 스페이스에서 서로 다른 대역폭을 가진 시스템들의 공존을 위한 적응적 채널 선택 기법)

  • Noh, Go-San;Bang, Keuk-Joon;Hong, Dae-Sik
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.49 no.3
    • /
    • pp.1-7
    • /
    • 2012
  • In this paper, we consider a channel selection method for the coexistence of heterogeneous systems in the TV white space (TVWS). First, we define the target heterogeneous system structure. Then, under the defined system structure, we discuss how the heterogeneous systems share the TVWS channels. Specifically, the heterogeneous systems having different bandwidths cannot use the TVWS channels due to the lack of wideband channels when only narrowband channels are remained. Hence, in order to minimize the blocking from the different bandwidth problem, we propose a channel selection method for the narrowband systems to firstly occupy the narrowband channels rather than the wideband channels. The proposed narrowband-first channel selection is shown to enhance the spectral efficiency of the TVWS, especially in the IEEE 802.19.1 wireless coexistence system.