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THE EXISTENCE, NONEXISTENCE AND UNIQUENESS

OF GLOBAL POSITIVE COEXISTENCE OF A

NONLINEAR ELLIPTIC BIOLOGICAL INTERACTING

MODEL

Joon Hyuk Kang, Jungho Lee, and Yun Myung Oh

Abstract. The purpose of this paper is to give a sufficient condi-
tion for the existence, nonexistence and uniqueness of coexistence
of positive solutions to a rather general type of elliptic competition
system of the Dirichlet problem on the bounded domain Ω in Rn.
The techniques used in this paper are upper-lower solutions, max-
imum principles and spectrum estimates. The arguments also rely
on some detailed properties for the solution of logistic equations.
This result yields an algebraically computable criterion for the pos-
itive coexistence of competing species of animals in many biological
models.

1. Introduction

The coexistence of steady states of competition interacting models
with diffusion has been an object of intensive study in recent years. See,
for example, lists of references in [1], [3], [4], [5], [9], [10], [14], [15], [14], [15].
The most general type of parabolic competition interacting system is{

ut = ∆u + ug(u, v),
vt = ∆v + vh(u, v),

where ∆ is the Laplacian and u, v represent the densities of two com-
peting species of animals. The terms ∆u and ∆v model dispersal by
means of simple diffusion. We assume here that the C1 functions g and
h are relative growth rates satisfying the following so-called growth rate
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conditions:

(G1) gu(u, v) < 0, gv(u, v) < 0, hu(u, v) < 0, hv(u, v) < 0,
(G2) There exist constants c0 > 0, c1 > 0 such that g(u, 0) ≤ 0 for u ≥ c0

and h(0, v) ≤ 0 for u ≥ c1.

The hypothesis (G1) characterizes how the two species u and v in-
teract with each other in terms of their relative growth rates. It is well
known that condition (G2) exhibits the so-called logistic pattern while
the constants c0 and c1 are referred to as the carrying capacity.

The earlier literature on this line focused in the Neumann boundary
value problem:

(1)


ut = ∆u + ug(u, v),
vt = ∆v + vh(u, v),
∂u(t,x)

∂n
= 0 = ∂v(t,x)

∂n
for (t, x) ∈ [0, T ]× ∂Ω,

and in its steady state, the elliptic system

(2)


∆u + ug(u, v) = 0,
∆v + vh(u, v) = 0,
∂u(x)

∂n
= 0 = ∂v(x)

∂n
for x ∈ ∂Ω,

where n denotes the unit out-normal along boundary ∂Ω. The Neumann

boundary conditions ∂u(x)
∂n

= 0 = ∂v(x)
∂n

are interpreted as an assumption
that both populations are staying inside, that there is no migratory flux
across ∂Ω. The goals of investigations along this line include finding out
under what conditions on the nonlinearities g and h systems (1) and
(2) have positive solutions u > 0, v > 0 and the possible uniqueness.
Most of the work in this case were established by P. DeMottoni and F.
Rothe in 1979 [7] and P. Brown in 1980 [2]. Their work in a large sense
completes the avenue of investigation in the study of Neumann boundary
value problems. Researchers thus have since turned their attention to
the biologically and physically more important case that is the Dirichlet
boundary condition:

(3)

 ∆u + ug(u, v) = 0,
∆v + vh(u, v) = 0,

(u, v)|∂Ω = (0, 0).

Biologically, this setting allows migration of these two populations across
the boundary but they may not stay on ∂Ω, where, for example ∂Ω is a
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river. It was then found that the features known in the Neumann setting
are not usually shared by those in the Dirichlet setting. The study in
the latter setting, especially in the case of steady states like system (3),
seems to be more difficult.

The goal of this paper is to answer the following questions about pos-
itive steady state to (3).

Problem 1 : What are the sufficient conditions for existence of steady
state?

Problem 2 : Is it possible for either one of the species to be extinct?

Problem 3 : When is the coexistence state unique?

2. Preliminaries

In this section we state some preliminary results which will be useful
for our later arguments.

Definition 2.1. (Upper and Lower solutions)
The vector functions (ū1, ..., ūN), (u1, ..., uN) form an upper/lower solu-
tion pair for the system{

∆ui + gi(u1, ..., uN) = 0 in Ω
ui = 0 on ∂Ω

if for i = 1, ..., N ∆ūi + gi(u1, ..., ui−1, ūi, ui+1, ..., uN) ≤ 0
∆ui + gi(u1, ..., ui−1, ui, ui+1, ..., uN) ≥ 0

in Ω for uj ≤ uj ≤ ūj, j 6= i,

and
ui ≤ ūi on Ω
ui ≤ 0 ≤ ūi on ∂Ω.

Lemma 2.1. ( [1])
If gi in the Definition 2.1 are in C1 and the system admits an upper/lower
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solution pair (u1, ..., uN), (ū1, ..., ūN), then there is a solution of the sys-
tem in 2.1 with ui ≤ ui ≤ ūi in Ω̄. If

∆ūi + gi(ū1, ..., ūN) 6= 0,
∆ui + gi(u1, ..., uN) 6= 0

in Ω for i = 1, ..., N , then ui < ui < ūi in Ω.

Lemma 2.2. (The first eigenvalue)([6])

(4)

{
−∆u + q(x)u = λu in Ω,
u|∂Ω = 0,

where q(x) is a smooth function from Ω to R and Ω is a bounded domain
in Rn.
(A) The first eigenvalue λ1(q) of (4), denoted by simply λ1 when q ≡ 0,
is simple with a positive eigenfunction.
(B) If q1(x) < q2(x) for all x ∈ Ω, then λ1(q1) < λ1(q2).
(C)(Variational Characterization of the first eigenvalue)

λ1(q) = min
φ∈W 1

0 (Ω),φ6=0

∫
Ω
(|∇φ|2 + qφ2)dx∫

Ω
φ2dx

.

We also need some information on the solutions of the following lo-
gistic equations.

Lemma 2.3. ([14]) {
∆u + uf(u) = 0 in Ω,
u|∂Ω = 0, u > 0,

where f is a decreasing C1 function such that there exists c0 > 0 such
that f(u) ≤ 0 for u ≥ c0 and Ω is a bounded domain in Rn.

(1) If f(0) > λ1, then the above equation has a unique positive solution,
where λ1 is the first eigenvalue of −∆ with homogeneous boundary con-
dition. We denote this unique positive solution as θf .
(2) If f(0) ≤ λ1, then the above equation does not have any positive
solution.
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3. Existence, Nonexistence and Uniqueness

We consider the system (3) with conditions (G1) and (G2).

Theorem 3.1. (A) If g(0, c1) > λ1 and h(c0, 0) > λ1, then (3) has a
solution (u, v) with

θg(·,c1) < u < θg(·,0)
θh(c0,·) < v < θh(0,·).

Conversely, any solution (u, v) of (3) with u > 0, v > 0 in Ω must satisfy
these inequalities.
(B) If g(0, 0) ≤ λ1 or h(0, 0) ≤ λ1, then (3) does not have any positive
solution.

Proof. (A) Let ū = θg(·,0), v̄ = θh(0,·). Then by the monotonicity of g,

∆ū + ūg(ū, v̄)
= ∆ū + ū(g(ū, 0)− g(ū, 0) + g(ū, v̄))
= ū(g(ū, v̄)− g(ū, 0)) < 0.

Similarly,

∆v̄ + v̄h(ū, v̄) < 0.

So, (ū, v̄) is an upper solution to (3).
Let u = θg(·,c1) and v = θh(c0,·). Then by the Maximum Principles, we
obtain

u ≤ θg(·,0) ≤ c0,
v ≤ θh(0,·) ≤ c1.

By the monotonicity of g,

∆u + ug(u, v)
= ∆u + u(g(u, c1)− g(u, c1) + g(u, v))
= u(g(u, v)− g(u, c1)) ≥ 0.

Similarly,

∆v + vh(u, v) ≥ 0.

Therefore, (u, v) is a lower solution to (3). Furthermore, u < ū, v < v̄ in
Ω and u = ū = v = v̄ = 0 on ∂Ω.
So, (3) has a solution (u, v) with

θg(·,c1) < u < θg(·,0),
θh(c0,·) < v < θh(0,·).
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Suppose (u, v) is a coexistence state for (3). Then since

∆u + ug(u, 0)
≥ ∆u + ug(u, v) = 0,

u is a lower solution of

(5)
∆Z + Zg(Z, 0) = 0 in Ω,

Z = 0 on ∂Ω.

But, since any constant larger than c0 is an upper solution of (5), we
have

(6) u < θg(·,0).

Similarly, we have

(7) v < θh(0,·).

Since v < θh(0,·) ≤ c1, by the monotonicity of g

∆u + ug(u, c1)
≤ ∆u + ug(u, v) = 0.

Therefore, u is an upper solution of

(8)
∆Z + Zg(Z, c1) = 0 in Ω,

Z = 0 on ∂Ω.

If ε > 0 is so small that g(εφ1, c1) > λ1 on Ω̄, where φ1 is the first
eigenvector of −∆ with homogeneous boundary condition, then since

∆εφ1 + εφ1g(εφ1, c1)
= ε(∆φ1 + φ1g(εφ1, c1))
> ε(∆φ1 + λ1φ1) = 0,

εφ1 is a lower solution of (8). So, we have

(9) θg(·,c1) < u.

Similarly, we have

(10) θh(c0,·) < v.

By (6), (7), (9) and (10),

θg(·,c1) < u < θg(·,0),
θh(c0,·) < v < θh(0,·).
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(B) Assume g(0, 0) ≤ λ1. The other cases are proved similarly. Suppose
(ū, v̄) is a positive solution to (3). Then since

∆ū + ūg(ū, 0)
= ∆ū + ū(g(ū, v̄)− g(ū, v̄) + g(ū, 0))
= ū(g(ū, 0)− g(ū, v̄)) ≥ 0,

ū is a lower solution to

(11)
∆u + ug(u, 0) = 0 in Ω,

u = 0 on ∂Ω.

Any constant larger than c0 is an upper solution to (11). Hence, (11)
has a positive solution u0 with ū < u0. This contradicts to the Lemma
2.3 which says there is no positive solution of (11) if g(0, 0) ≤ λ1.

Theorem 3.2. If g(0, c1) > λ1, h(c0, 0) > λ1 and

4 inf(−∂g(u,v)
∂u

) inf(−∂h(u,v)
∂v

) ≥ θg(·,0)
θh(c0,·)

(sup ∂g(u,v)
∂v

)2 +
θh(0,·)
θg(·,c1)

(sup ∂h(u,v)
∂u

)2

+2(sup ∂g(u,v)
∂v

)(sup ∂h(u,v)
∂u

),

then (3) has a unique positive solution.

Proof. Suppose (u1, v1) and (u2, v2) are positive solutions to (3). Let
p = u1 − u2 and q = v1 − v2. Then

∆p + pg(u1, v1)
= ∆u1 −∆u2 + (u1 − u2)g(u1, v1)
= −∆u2 − u2g(u1, v1)
= −∆u2 − u2(g(u2, v2)− g(u2, v2) + g(u1, v1))
= −u2(g(u1, v1)− g(u2, v2))
= −u2(g(u1, v1)− g(u2, v1) + g(u2, v1)− g(u2, v2)).

But, by the Mean Value Theorem, there is x̃ depending on u1, u2 such
that

g(u1, v1)− g(u2, v1) =
∂g(x̃, v1)

∂u
p.

Hence,

∆p + pg(u1, v1) = −u2[
∂g(x̃, v1)

∂u
p + g(u2, v1)− g(u2, v2)].

i.e.,

(12) ∆p + g(u1, v1)p + u2p
∂g(x̃,v1)

∂u
− u2(g(u2, v2)− g(u2, v1)) = 0.
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The same argument shows that

(13) ∆q + h(u2, v2)q + v1q
∂h(u2,x̄)

∂v
− v1(h(u2, v1)− h(u1, v1)) = 0,

where x̄ depends on v1, v2 by the Mean Value Theorem.
Since λ1(−g(u1, v1)) = 0, by the Variational Characterization of the first
eigenvalue,

(14)
∫

Ω
Z(−∆Z − g(u1, v1)Z)dx ≥ 0

for any Z ∈ C2(Ω̄) and Z|∂Ω = 0. The same argument shows that

(15)
∫

Ω
W (−∆W − h(u2, v2)W )dx ≥ 0

for any W ∈ C2(Ω̄) and W |∂Ω = 0.
From (12) and (13), we get

−p∆p− g(u1, v1)p
2 − ∂g(x̃,v1)

∂u
u2p

2 + u2p(g(u2, v2)− g(u2, v1)) = 0,

−q∆q − h(u2, v2)q
2 − ∂h(u2,x̄)

∂v
v1q

2 + v1q(h(u2, v1)− h(u1, v1)) = 0.

Hence from (14) and (15),∫
Ω
(−∂g(x̃,v1)

∂u
u2p

2 + u2p(g(u2, v2)− g(u2, v1)) + v1q(h(u2, v1)− h(u1, v1))

−∂h(u2,x̄)
∂v

v1q
2)dx ≤ 0.

By the Mean Value Theorem, for each x ∈ Ω, there exist ỹ, ȳ such that

g(u2, v2)− g(u2, v1) = ∂g(u2,ỹ)
∂v

(−q),

h(u2, v1)− h(u1, v1) = ∂h(ȳ,v1)
∂u

(−p),

which implies that∫
Ω

−∂g(x̃, v1)

∂u
u2p

2−(u2
∂g(u2, ỹ)

∂v
+v1

∂h(ȳ, v1)

∂u
)pq−∂h(u2, x̄)

∂v
v1q

2dx ≤ 0.

Therefore, we find

p ≡ q ≡ 0 if −∂g(x̃, v1)

∂u
u2ζ

2 − (u2
∂g(u2, ỹ)

∂v
+ v1

∂h(ȳ, v1)

∂u
)ζη

− ∂h(u2, x̄)

∂v
v1η

2 is positive definite

for each x ∈ Ω.

This is the case if

u2
2(

∂g(u2,ỹ)
∂v

)2 + v2
1(

∂h(ȳ,v1)
∂u

)2 + 2u2v1
∂g(u2,ỹ)

∂v
∂h(ȳ,v1)

∂u

−4∂g(x̃,v1)
∂u

∂h(u2,x̄)
∂v

u2v1 ≤ 0 for each x ∈ Ω.
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i.e., 4∂g(x̃,v1)
∂u

∂h(u2,x̄)
∂v

≥ u2

v1
(∂g(u2,ỹ)

∂v
)2 + v1

u2
(∂h(ȳ,v1)

∂u
)2

+2∂g(u2,ỹ)
∂v

∂h(ȳ,v1)
∂u

for each x ∈ Ω.

But, from the inequality in (A) and the hypothesis in the theorem,

u2

v1
(∂g(u2,ỹ)

∂v
)2 + 2∂g(u2,ỹ)

∂v
∂h(ȳ,v1)

∂u
+ v1

u2
(∂h(ȳ,v1)

∂u
)2

≤ θg(·,0)
θh(c0,·)

(sup ∂g(u,v)
∂v

)2 +
θh(0,·)
θg(·,c1)

(sup ∂h(u,v)
∂u

)2

+2 sup(∂g(u,v)
∂v

) sup(∂h(u,v)
∂u

)

≤ 4 inf(−∂g(u,v)
∂u

) inf(−∂h(u,v)
∂v

)

≤ 4∂g(x̃,v1)
∂u

∂g(u2,x̄)
∂v

.

We can also extend the results to the case when there are multiple species
competing in the same environment.

Consider the interacting model

(16)
∆ui + uigi(ui, u2, ..., ui, ui+1, ..., uN) = 0 in Ω,

ui = 0 on ∂Ω

for i = 1, ..., N .

Again, we assume here that the C1 functions gi for i = 1, ..., N are
relative growth rates satisfying the following growth rate conditions:

(M1) ∂gi

∂uj
< 0 for i, j = 1, 2, ..., N ,

(M2) There exist constants c1 > 0, c2 > 0, ..., cN > 0 such that
gi(0, ..., 0, ui, 0, ..., 0) ≤ 0 for ui ≥ ci.

Again, (M1) characterizes how the N species u1, u2, ..., uN interact with
each other in terms of their relative growth rates and (M2) is the logistic
pattern with carrying capacity constants c1, c2, ..., cN .
The followings are the main results. The proofs are similar to those with
2 competing species, and so we just sketch it without the details.

Theorem 3.3. (A) If gi(c1, c2, ..., ci−1, 0, ci+1, ..., cN) > λ1 for i =
1, ..., N , then (16) has a solution (u1, ..., uN) with

θgi(c1,...,ci−1,·,ci+1,...,cN ) < ui < θgi(0,...,0,·,0,...,0)

for i = 1, .., N .
Conversely, any solution (u1, ..., uN) of (16) with ui > 0 in Ω must satisfy
these inequalities.
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(B) If gi(0, ..., 0) ≤ λ1 for some i = 1, ..., N , then (16) does not have any
positive solution.

Proof. (A) Let ūi = θgi(0,...,0,·,0,...,0) and ui = θgi(c1,...,ci−1,·,ci+1,...,cN ) for
i = 1, ..., N . Then by the Maximum Principles and the monotonicity of
gi, (ū1, ..., ūi, ..., ūN) and (u1, ..., ui, ..., uN) are upper and lower solutions
to (16), respectively.
Furthermore, for i = 1, ..., N , ui < ūi in Ω and ui = ūi = 0 on ∂Ω.
So, (16) has a solution (u1, ..., uN) with the desired inequalities

θgi(c1,...,ci−1,·,ci+1,...,cN ) < ui < θgi(0,...,0,·,0,...,0)

for i = 1, .., N .
Suppose (u1, ..., uN) is a coexistence state for (16). Then by the direct
computation using the monotonicity of gi, we know that ui is a lower
solution of

(17)
∆Z + Zgi(0, ..., 0, Z, 0, ..., 0) = 0 in Ω,

Z = 0 on ∂Ω

for i = 1, ..., N
But, since any constant larger than ci is an upper solution of (17), we
have

(18) ui < θgi(0,...,0,·,0,...,0)

for i = 1, ..., N .
Since ui < θgi(0,...,0,·,0,...,0) ≤ ci, by the monotonicity of gi, we can derive
that ui is an upper solution of

(19)
∆Z + Zgi(c1, ..., ci−1, Z, ci+1, ..., cN) = 0 in Ω,

Z = 0 on ∂Ω

for i = 1, ..., N .
If ε > 0 is so small that gi(c1, ..., ci−1, εφ1, ci+1, ..., cN) > λ1 on Ω̄, where
φ1 is the first eigenvector of −∆ with homogeneous boundary condition,
then by the dirct computation again, we know that εφ1 is a lower solution
of (19).
So, we have

(20) θgi(c1,...,ci−1,·,ci+1,...,cN ) < ui

for i = 1, ..., N .
By (18) and (20),

θgi(c1,...,ci−1,·,ci+1,...,cN ) < ui < θgi(0,...,0,·,0,...,0)
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for i = 1, ..., N .

(B) Without loss of generality, assume g1(0, ..., 0) ≤ λ1.
Suppose (ū1, ..., ūN) is a positive solution to (16). Then by the mono-
tonicity of gi, ū1 is a lower solution to

(21)
∆Z + Zg1(Z, 0, ..., 0) = 0 in Ω,

Z = 0 on ∂Ω.

Hence, by the fact that any constant larger than c1 is an upper solution
to (21), (21) has a positive solution u1 with ū1 < u1 that contradicts to
the Lemma 2.3.

Theorem 3.4. If gi(c1, ..., ci−1, 0, ci+1, ..., cN) > λ1 and

2 inf(−∂gi

∂xi

) >
N∑

j=1,j 6=i

(sup(− ∂gi

∂xj

) + K sup(−∂gj

∂xi

))

for i = 1, ..., N , where K = supi,j 6=i

θgj(0,...,0,·,0,...,0)

θgi(c1,...,ci−1,·,ci+1,...,cN )
, then (16) has a

unique coexistence state.

Proof. Suppose (u1, ..., uN) and (v1, ..., vN) are coexistence states of
(16) and let wi = ui−vi for i = 1, ..., N . Then by the direct computation
and the Variational Characterization of the first eigenvalue, we obtain∫

Ω

N∑
i=1

[viwi(gi(v1, ..., vi, ..., vN)− gi(u1, ..., ui, ..., uN))]dx ≤ 0.

By the Mean Value Theorem, there exist ti and zij such that

(22)

∫
Ω

∑N
i=1[

∂gi(v1,...,vi−1,ti,vi+1,...,vN )
∂xi

(−vi)w
2
i

+
∑N

j=1,j 6=i viwi
∂gi(u1,...,uj−1,zij ,vj+1,...,vN )

∂xj
(−wj)]dx ≤ 0.

If the integrand in the left side of (22) is positive definite, then (22)
implies that wi ≡ 0 in Ω for i = 1, ..., N , which means the uniqueness of
the coexistence state for (16). But for any ε > 0,

∂gi(u1,...,uj−1,zij ,vj+1,...,vN )

∂xj
(−vi)wi(wj)

≤ ∂gi(u1,...,uj−1,zij ,vj+1,...,vN )

∂xj
(−vi)[

w2
i

2ε
+

εw2
j

2
].
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So, we can see that the integrand is positive definite if for i = 1, ..., N
and x ∈ Ω,

∂gi(v1,...,vi−1,ti,vi+1,...,vN )
∂xi

(−vi)

>
∑N

j=1,j 6=i(
∂

∂xj
gi(u1,...,uj−1,zij ,vj+1,...,vN )(−vi)

2ε
+

ε ∂
∂xi

gj(u1,...,ui−1,zji,vi+1,...,vN )(−vj)

2
)

or equivalently,

(23)

−∂gi(v1,...,vi−1,ti,vi+1,...,vN )
∂xi

>
∑N

j=1,j 6=i(
− ∂

∂xj
gi(u1,...,uj−1,zij ,vj+1,...,vN )

2ε

−
ε ∂

∂xi
gj(u1,...,ui−1,zji,vi+1,...,vN )

vj
vi

2
).

Since θgi(c1,...,ci−1,·,ci+1,...,cN ) < vi < θgi(0,...,0,·,0,...,0) in Ω for i = 1, ..., N ,
(23) will hold if for i = 1, ..., N ,

−∂gi(v1,...,vi−1,ti,vi+1,...,vN )
∂xi

>
∑N

j=1,j 6=i(
sup(− ∂gi

∂xj

2ε
+

ε sup(−
∂gj
∂xi

)

2

θgj(0,...,0,·,0,...,0)

θgi(c1,...,ci−1,·,ci+1,...,cN )
).

Let K = supi,j 6=i

θgj(0,...,0,·,0,...,0)

θgi(c1,...,ci−1,·,ci+1,...,cN )
. Then (23) holds if

inf(−∂gi

∂xi

) >
N∑

j=1,j 6=i

(
sup(− ∂gi

∂xj

2ε
+

Kε sup(−∂gj

∂xi
)

2
.

Choosing ε = 1, we have

2 inf(−∂gi

∂xi

) >
N∑

j=1,j 6=i

(sup(− ∂gi

∂xj

) + K sup(−∂gj

∂xi

)).
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