• Title/Summary/Keyword: Coenzyme Q10

Search Result 86, Processing Time 0.026 seconds

Restoration of Saccharomyces cerevisiae coq7 Mutant by a Neurospora crassa Gene (Neurospora crassa 유전자에 의한 Saccharomyces cerevisiae coq7 돌연변이의 회복)

  • 김은정;김상래;이병욱
    • Journal of Life Science
    • /
    • v.13 no.6
    • /
    • pp.933-942
    • /
    • 2003
  • CoenzymeQ is a quinone derivative with a long isoprenoid side chain. It transports electrons in the respiratory chain located in the inner mitochondrial membrane of eukaryotes and the plasma membrane of prokaryotes. It also functions as an antioxidant. Saccharomyces cerevisine coq mutants, that are deficient coenzyme Q biosynthesis fail to aerobically grow. They are not able to grow on non-fermentable carbon sources, such as glycerol, either The putative $coq^{-7}$ gene involved in coenzyme Q biosynthesis of Neurospora crassa was cloned and used for complementation of S. cerevisiae coq7 mutant. The predicted amino acid sequence of N. crassa COQ7 showed about 58% homology with Coq7p of S. cerevisiae. The growth rate of S. cerevisiae $coq^7$ mutant transformed with the N. crassa $coq^{-7}$ gene was restored to the wild-type level. The complemented 5. cerevisiae strain was able to grow with glycerol as a sole carbon source and showed less sensitivities to linolenic acid, a polyunsaturated fatty acid.

Effect of Limited Oxygen Supply on Coenzyme $Q_{10}$ Production and Its Relation to Limited Electron Transfer and Oxidative Stress in Rhizobium radiobacter T6102

  • Seo, Myung-Ji;Kim, Soon-Ok
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.2
    • /
    • pp.346-349
    • /
    • 2010
  • Coenzyme $Q_{10}$ ($CoQ_{10}$) production from Rhizobium radiobacter T6102 was monitored under various oxygen supply conditions by controlling the agitation speeds, aeration rates, and dissolved oxygen levels. As the results, the $CoQ_{10}$ production was enhanced by limited oxygen supply. To investigate whether the $CoQ_{10}$ production is associated with its physiological functions of electron carrier and antioxidant, the effects of sodium azide and hydrogen peroxide on the $CoQ_{10}$ production were studied, showing that the $CoQ_{10}$ contents were slightly enhanced with increasing sodium azide (up to 0.4 mM) and hydrogen peroxide (up to $10\;{\mu}M$) concentrations. These results suggest the plausible mechanism where the limited electron transfer stimulating the environments of limited oxygen supply and oxidative stress could accumulate the $CoQ_{10}$, providing the relationship between the $CoQ_{10}$ physiological functions and its regulation system.

Coenzyme Q10, oxidative stress markers, and sperm DNA damage in men with idiopathic oligoasthenoteratospermia

  • Alahmar, Ahmed T;Sengupta, Pallav;Dutta, Sulagna;Calogero, Aldo E.
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.48 no.2
    • /
    • pp.150-155
    • /
    • 2021
  • Objective: Oxidative stress (OS) plays a key role in the etiology of unexplained male infertility. Coenzyme Q10 (CoQ10) is a potent antioxidant that may improve semen quality and OS in infertile men with idiopathic oligoasthenoteratospermia (OAT), but the underlying mechanism is unknown. Therefore, the present study was undertaken to investigate the effect of CoQ10 on OS markers and sperm DNA damage in infertile patients with idiopathic OAT. Methods: This prospective controlled study included 50 patients with idiopathic OAT and 50 fertile men who served as controls. All patients underwent a comprehensive medical assessment. Patients and controls received 200 mg of oral CoQ10 once daily for 3 months. Semen and blood were collected and analyzed for sperm parameters, seminal CoQ10 levels, reactive oxygen species (ROS) levels, total antioxidant capacity, catalase, sperm DNA fragmentation (SDF), and serum hormonal profile. Results: The administration of CoQ10 to patients with idiopathic OAT significantly improved sperm quality and seminal antioxidant status and significantly reduced total ROS and SDF levels compared to pretreatment values. Conclusion: CoQ10, at a dose of 200 mg/day for 3 months, may be a potential therapy for infertile patients with idiopathic OAT, as it improved sperm parameters and reduced OS and SDF in these patients.

Bioaccessibility of β-Lactoglobulin Nanoemulsions Containing Coenzyme Q10: Impact of Droplet Size on the Bioaccessibility of Coenzyme Q10

  • Ha, Ho-Kyung;Lee, Mee-Ryung;Lee, Won-Jae
    • Food Science of Animal Resources
    • /
    • v.38 no.6
    • /
    • pp.1294-1304
    • /
    • 2018
  • The aims of this research were to examine the effect of heating temperature (65, 75, and $85^{\circ}C$) and $CaCl_2$ concentration level (3, 4, and 5 mM) on the physicochemical properties of ${\beta}$-lactoglobulin (${\beta}$-lg) nanoemulsions (NEs) and to study how the droplet size of NEs affects the bioaccessibility (BA) of coenzyme $Q_{10}$ ($CoQ_{10}$). The droplet size of NEs and BA of $CoQ_{10}$ was assessed by particle size analyzer and UV-Vis spectrophotometer, respectively. An increase in heating temperature and $CaCl_2$ concentration level resulted in a significant (p<0.05) increase in the droplet size of NEs while there were no significant differences in polydispersity index and zeta-potential of NEs. When NEs containing $CoQ_{10}$ were incubated in simulated small intestinal phases, an increase in the droplet size and polydispersity index of NEs was observed. This indicated that NEs were not stable in small intestine and digestion of NEs occurred. As heating temperature and $CaCl_2$ concentration level were decreased, a significant (p<0.05) increase in BA of $CoQ_{10}$ was observed. There was a significant (p<0.05) increase in BA of $CoQ_{10}$ with a decrease in the droplet size of NEs. In conclusion, heating temperature and $CaCl_2$ concentration level were key-parameters affecting the initial droplet size of NEs and BA of $CoQ_{10}$ was negatively correlated with initial droplet size of NEs.

The Effect of coenzyme QI0 Supplement On Cardiorepiratory Function and the Energy Substrates Utilization During Maximal Exercise

  • Kim, Jun-Mo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.19 no.4
    • /
    • pp.1091-1100
    • /
    • 2008
  • The purpose of this study is to find out how energy substrate's utilizations in the maximal exercise-cardiorespiratory function and the energy metabolic variation- have the effect on before and after the supplements of coenzyme Q10(100mg per day for 8 weeks) based on the male students(CoQ10=8, placebo=8) of high school. The results of this study are as follows: Maximal oxygen uptake and maximal oxygen per weight are found to have the significant increase respectively in supplement group. Glucose is found to have the significant decrease after the supplement of CoQ10. And then FFA is found to have the significant increase. In the above results, the supplements of CoQ10 and cardiorespiratory function in the maximal exercise are found to have the improvement. CoQ10 in the anaerobic exercise spares the energy's utilization of Glucose and then is found to have the increase of the utilization of FFA. CoQ10 in the aerobic exercise is reported to have the increase of the utilization of FFA and then CoQ10 in the maximal exercise is also recognized to have the increase of the utilization of FFA, or energy substrates.

  • PDF

Production of Coenzyme $Q_{10}$ by Recombinant E. coli Harboring the Decaprenyl Diphosphate Synthase Gene from Sinorhizobium meliloti

  • Seo Myung-Ji;Im Eun-Mi;Hur Jin-Haeng;Nam Jung-Yeon;Hyun Chang-Gu;Pyun Yu-Ryang;Kim Soon-Ok
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.6
    • /
    • pp.933-938
    • /
    • 2006
  • Decaprenyl diphosphate synthase (DPS) is the key enzyme for the production of coenzyme $Q_{10}$ ($CoQ_{10}$). A dps gene from Sinorhizobium meliioti KCCM 11232 (IFO 14782) was isolated by PCR and then cloned in Escherichia coli. DNA sequencing analysis revealed an open reading frame of 1,017 bp encoding a 338-amino-acid protein. The protein was identical at the 98% level to the putative octaprenyl diphosphate synthase (IspB) of S. meliloti 1021. The deduced amino acid sequence included the DDxxD domains conserved in the majority of the prenyl diphosphate synthases. Heterologous expression in E. coli BL21 (DE3) was carried out, and the $CoQ_{10}$ produced was then analyzed by HPLC. E. coli BL21 (DE3) harboring the dps gene from S. melioti produced CoQ$_{10}$ in addition to endogenous coenzyme Q$_8$ (CoQ$_8$), whereas wild-type E. coli BL21 (DE3) host did not have the ability of producing CoQ$_{10}$. The results suggest that the putative dps from S. meliloti KCTC 2353 encoded the DPS.

New evidences of neurotoxicity of aroclor 1254 in mice brain: potential of coenzyme q10 in abating the detrimental outcomes

  • Majumdar, Anuradha;Nirwane, Abhijit;Kamble, Rahul
    • Environmental Analysis Health and Toxicology
    • /
    • v.29
    • /
    • pp.1.1-1.7
    • /
    • 2014
  • Objectives The present subacute study was designed to evaluate the effect of coenzyme Q 10 (CoQ10) in the 28 days aroclor 1254 exposure induced oxidative stress in mice brain. Methods Biochemical estimations of brain lipid peroxidation (LPO), reduced glutathione (GSH), and activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and acetyl cholinesterase (AChE), and histopathological investigations of brain tissue were carried out. Results Oral exposure of aroclor 1254 (5 mg/kg) led to significant decrease in levels of GSH, and activities of SOD, CAT, GPx, and AChE, and increase in LPO. These aberrations were restored by CoQ10 (10 mg/kg, intraperitoneal injection [IP]). This protection offered was comparable to that of L-deprenyl (1 mg/kg, IP) which served as a reference standard. Conclusions Aroclor 1254 exposure hampers the activities of various antioxidant enzymes and induces oxidative stress in the brains of Swiss albino mice. Supplementation of CoQ10 abrogates these deleterious effects of aroclor 1254. CoQ10 also apparently enhanced acetyl cholinesterase activity which reflects its influence on the cholinergic system.

Protective effects and mechanism of coenzyme Q10 and vitamin C on doxorubicin-induced gastric mucosal injury and effects of intestinal flora

  • Zhao, Xiaomeng;Feng, Xueke;Ye, Nan;Wei, Panpan;Zhang, Zhanwei;Lu, Wenyu
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.25 no.4
    • /
    • pp.261-272
    • /
    • 2021
  • Doxorubicin (Dox) is widely used to the treatment of cancer, however, it could cause damage to gastric mucosa. To investigate the protective effects and related mechanisms of coenzyme Q10 (CoQ10) and vitamin C (VC) on Dox-induced gastric mucosal injury, we presented the survey of the 4 groups of the rats with different conditions. The results showed Dox treatment significantly induced GES-1 apoptosis, but preconditioning in GES-1 cells with VC or CoQ10 significantly inhibited the Dox-induced decrease and other harm effects, including the expression and of IκKβ, IκBα, NF-κB/p65 and tumor necrosis factor (TNF-α) in GES-1 cells. Moreover, high-throughput sequencing results showed Dox treatment increased the number of harmful gut microbes, and CoQ10 and VC treatment inhibited this effect. CoQ10 and VC treatment inhibits Dox-induced gastric mucosal injury by inhibiting the activation of the IkKB/IκBα/NF-κB/p65/TNF-α pathway, promoting anti-inflammatory effects of gastric tissue and regulating the composition of the intestinal flora.

Effects of pH and Light Irradiation on Coenzyme Q10 Production Using Rhodobacter sphaeroides

  • Jeong, Soo-Kyoung;Dao, Van Thingoc;Kien, Ngyuen;Kim, Joong-Kyun
    • Fisheries and Aquatic Sciences
    • /
    • v.11 no.4
    • /
    • pp.219-223
    • /
    • 2008
  • To increase the level of $CoQ_{10}$ production in mass culture, the effects of pH and light irradiation on $CoQ_{10}$ production by Rhodobacter sphaeroides were investigated in a 1-L bioreactor. $CoQ_{10}$ production was growth-associated, and the highest production of $CoQ_{10}$ (1.69 mg/g dry cell) was obtained under uncontrolled pH: this production was 1.7 times higher than that obtained at controlled pH 7. Therefore, pH was a key factor affecting $CoQ_{10}$ production. The effect of light irradiation on $CoQ_{10}$ production was negligible. This result offers an advantage for mass production of $CoQ_{10}$.

Effect of Coenzyme Q10 Supplementation in Statin-Treated Obese Rats

  • Choi, Hye-Kyung;Won, Eun-Kyung;Choung, Se-Young
    • Biomolecules & Therapeutics
    • /
    • v.24 no.2
    • /
    • pp.171-177
    • /
    • 2016
  • Statins, HMG-CoA reductase inhibitors, are known to cause serious muscle injuries (e.g. myopathy, myositis and rhabdomyolysis), and these adverse effects can be rescued by co-administration of coenzyme $Q_{10}$ ($CoQ_{10}$) with statins. The goal of the current research is to assess the efficacy of combined treatment of $CoQ_{10}$ with Atorvastatin for hyperlipidemia induced by high-fat diet in SD rats. 4-week-old Sprague-Dawley male rats were fed normal diet or high-fat diet for 6 weeks. Then, rats were treated with either Statin or Statin with various dosages of $CoQ_{10}$ (30, 90 or 270 mg/kg/day, p.o.) for another 6 weeks. Compared to Statin only treatment, $CoQ_{10}$ supplementation significantly reduced creatine kinase and aspartate aminotransferase levels in serum which are markers for myopathy. Moreover, $CoQ_{10}$ supplementation with Statin further reduced total fat, triglycerides, total cholesterol, and low-density lipoprotein-cholesterol. In contrast, the levels of high-density lipoprotein-cholesterol and $CoQ_{10}$ were increased in the $CoQ_{10}$ co-treated group. These results indicate that $CoQ_{10}$ treatment not only reduces the side effects of Statin, but also has an anti-obesity effect. Therefore an intake of supplementary $CoQ_{10}$ is helpful for solving problem of obese metabolism, so the multiple prescription of $CoQ_{10}$ makes us think a possibility that can be solved in being contiguous to the obesity problem, a sort of disease of the obese metabolism.