DOI QR코드

DOI QR Code

New evidences of neurotoxicity of aroclor 1254 in mice brain: potential of coenzyme q10 in abating the detrimental outcomes

  • Received : 2013.08.17
  • Accepted : 2013.12.03
  • Published : 2014.01.01

Abstract

Objectives The present subacute study was designed to evaluate the effect of coenzyme Q 10 (CoQ10) in the 28 days aroclor 1254 exposure induced oxidative stress in mice brain. Methods Biochemical estimations of brain lipid peroxidation (LPO), reduced glutathione (GSH), and activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and acetyl cholinesterase (AChE), and histopathological investigations of brain tissue were carried out. Results Oral exposure of aroclor 1254 (5 mg/kg) led to significant decrease in levels of GSH, and activities of SOD, CAT, GPx, and AChE, and increase in LPO. These aberrations were restored by CoQ10 (10 mg/kg, intraperitoneal injection [IP]). This protection offered was comparable to that of L-deprenyl (1 mg/kg, IP) which served as a reference standard. Conclusions Aroclor 1254 exposure hampers the activities of various antioxidant enzymes and induces oxidative stress in the brains of Swiss albino mice. Supplementation of CoQ10 abrogates these deleterious effects of aroclor 1254. CoQ10 also apparently enhanced acetyl cholinesterase activity which reflects its influence on the cholinergic system.

Keywords

References

  1. Wright DA, Welbourn P. Environmental toxicology. Cambridge: Cambridge University Press; 2002, p. 70.
  2. Letcher RJ, Lemmen JG, van der Burg B, Brouwer A, Bergman A, Giesy JP, et al. In vitro antiestrogenic effects of aryl methyl sulfone metabolites of polychlorinated biphenyls and 2,2-bis (4-chlorophenyl)-1,1-dichloroethene on 17 beta-estradiol-induced gene expression in several bioassay systems. Toxicol Sci 2002;69(2):362-372. https://doi.org/10.1093/toxsci/69.2.362
  3. McKinney MA, De Guise S, Martineau D, Beland P, Arukwe A, Letcher RJ. Biotransformation of polybrominated diphenyl ethers and polychlorinated biphenyls in beluga whale (Delphinapterus leucas) and rat mammalian model using an in vitro hepatic microsomal assay. Aquat Toxicol 2006;77(1):87-97. https://doi.org/10.1016/j.aquatox.2005.08.016
  4. Verreault J, Muir DC, Norstrom RJ, Stirling I, Fisk AT, Gabrielsen GW, et al. Chlorinated hydrocarbon contaminants and metabolites in polar bears (Ursus maritimus) from Alaska, Canada, East Greenland, and Svalbard: 1996-2002. Sci Total Environ 2005;351-352: 369-390. https://doi.org/10.1016/j.scitotenv.2004.10.031
  5. US Agency for Toxic Substances and Disease Registry; Research Triangle Institute. Toxicological profile for polychlorinated biphenyls. Atlanta, GA: US Agency for Toxic Substances and Disease Registry; 1997, p. 6-23.
  6. Fonnum F, Lock EA. The contributions of excitotoxicity, glutathione depletion and DNA repair in chemically induced injury to neurones: exemplified with toxic effects on cerebellar granule cells. J Neurochem 2004;88(3):513-531.
  7. Tilson HA, Kodavanti PR. The neurotoxicity of polychlorinated biphenyls. Neurotoxicology 1998;19(4-5):517-525.
  8. Monks TJ, Lau SS. Toxicology of quinone-thioethers. Crit Rev Toxicol 1992;22(5-6):243-270. https://doi.org/10.3109/10408449209146309
  9. Faroon O, Jones D, de Rosa C. Effects of polychlorinated biphenyls on the nervous system. Toxicol Ind Health 2000;16(7-8):305-333. https://doi.org/10.1177/074823370001600708
  10. Campagna R, Brunelli L, Airoldi L, Fanelli R, Hakansson H, Heimeier RA, et al. Cerebellum proteomics addressing the cognitive deficit of rats perinatally exposed to the food-relevant polychlorinated biphenyl 138. Toxicol Sci 2011;123(1):170-179. https://doi.org/10.1093/toxsci/kfr156
  11. Boucher O, Muckle G, Bastien CH. Prenatal exposure to polychlorinated biphenyls: a neuropsychologic analysis. Environ Health Perspect 2009;117(1):7-16.
  12. Newland MC. Neurobehavioral toxicity of methylmercury and PCBs: effects-profiles and sensitive populations. Environ Toxicol Pharmacol 2002;12(2):119-128. https://doi.org/10.1016/S1382-6689(02)00030-3
  13. Holene E, Nafstad I, Skaare JU, Sagvolden T. Behavioural hyperactivity in rats following postnatal exposure to sub-toxic doses of polychlorinated biphenyl congeners 153 and 126. Behav Brain Res 1998;94(1):213-224. https://doi.org/10.1016/S0166-4328(97)00181-2
  14. Beal MF. Therapeutic effects of coenzyme Q10 in neurodegenerative diseases. Methods Enzymol 2004;382:473-487. https://doi.org/10.1016/S0076-6879(04)82026-3
  15. Bentinger M, Brismar K, Dallner G. The antioxidant role of coenzyme Q. Mitochondrion 2007;7 Suppl:S41-S50. https://doi.org/10.1016/j.mito.2007.02.006
  16. Crane FL. Discovery of ubiquinone (coenzyme Q) and an overview of function. Mitochondrion 2007;7 Suppl:S2-S7. https://doi.org/10.1016/j.mito.2007.02.011
  17. Turunen M, Olsson J, Dallner G. Metabolism and function of coenzyme Q. Biochim Biophys Acta 2004;1660(1-2):171-199. https://doi.org/10.1016/j.bbamem.2003.11.012
  18. Mancuso M, Orsucci D, Calsolaro V, Choub A, Siciliano G. Coenzyme Q10 and neurological diseases. Pharmaceuticals 2009; 2(3):134-149. https://doi.org/10.3390/ph203134
  19. Kaczor T. Coenzyme Q10 in Parkinson's disease: ready for first line use? Nat Med J 2010;2(11):3-7.
  20. Carpenter DO, Hussain RJ, Berger DF, Lombardo JP, Park HY. Electrophysiologic and behavioral effects of perinatal and acute exposure of rats to lead and polychlorinated biphenyls. Environ Health Perspect 2002;110 Suppl 3:377-386.
  21. Seegal RF, Bush B, Brosch KO. Sub-chronic exposure of the adult rat to Aroclor 1254 yields regionally-specific changes in central dopaminergic function. Neurotoxicology 1991;12(1):55-65.
  22. Muthuvel R, Venkataraman P, Krishnamoorthy G, Gunadharini DN, Kanagaraj P, Jone Stanley A, et al. Antioxidant effect of ascorbic acid on PCB (Aroclor 1254) induced oxidative stress in hypothalamus of albino rats. Clin Chim Acta 2006;365(1-2):297-303. https://doi.org/10.1016/j.cca.2005.09.006
  23. Todd KG, Butterworth RF. Increased neuronal cell survival after Ldeprenyl treatment in experimental thiamine deficiency. J Neurosci Res 1998;52(2):240-246. https://doi.org/10.1002/(SICI)1097-4547(19980415)52:2<240::AID-JNR12>3.0.CO;2-B
  24. Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 1979;95(2): 351-358. https://doi.org/10.1016/0003-2697(79)90738-3
  25. Moron MS, Depierre JW, Mannervik B. Levels of glutathione, glutathione reductase and glutathione S-transferase activities in rat lung and liver. Biochim Biophys Acta 1979;582(1):67-78. https://doi.org/10.1016/0304-4165(79)90289-7
  26. Beers RF Jr, Sizer IW. A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J Biol Chem 1952;195(1):133-140.
  27. Sun M, Zigman S. An improved spectrophotometric assay for superoxide dismutase based on epinephrine autoxidation. Anal Biochem 1978;90(1):81-89. https://doi.org/10.1016/0003-2697(78)90010-6
  28. Carrillo MC, Kanai S, Nokubo M, Kitani K. (-) deprenyl induces activities of both superoxide dismutase and catalase but not of glutathione peroxidase in the striatum of young male rats. Life Sci 1991;48(6):517-521. https://doi.org/10.1016/0024-3205(91)90466-O
  29. Ellman GL, Courtney KD, Andres V Jr, Feather-Stome RM. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 1961;7:88-95. https://doi.org/10.1016/0006-2952(61)90145-9
  30. Culling CA. Handbook of histopathological and histochemical techniques: including museum techniques. 3rd ed. London: Butterworth; 1974, p. 361.
  31. Lovell MA, Markesbery WR. Oxidative DNA damage in mild cognitive impairment and late-stage Alzheimer's disease. Nucleic Acids Res 2007;35(22):7497-7504. https://doi.org/10.1093/nar/gkm821
  32. Cannon JR, Greenamyre JT. The role of environmental exposures in neurodegeneration and neurodegenerative diseases. Toxicol Sci 2011;124(2):225-250. https://doi.org/10.1093/toxsci/kfr239
  33. Tharappel JC, Lee EY, Robertson LW, Spear BT, Glauert HP. Regulation of cell proliferation, apoptosis, and transcription factor activities during the promotion of liver carcinogenesis by polychlorinated biphenyls. Toxicol Appl Pharmacol 2002;179(3):172-84. https://doi.org/10.1006/taap.2001.9360
  34. Berman SB, Hastings TG. Dopamine oxidation alters mitochondrial respiration and induces permeability transition in brain mitochondria: implications for Parkinson's disease. J Neurochem 1999; 73(3):1127-1137.
  35. Nikolova G. Oxidative stress and Parkinson disease. Trakia J Sci 2012;10(1):92-100.
  36. Freeman GB, Lordo RA, Singer AW, Peters AC, Neal BH, McConnell EE, et al. An assessment of neurotoxicity of aroclors 1016, 1242, 1254, and 1260 administered in diet to Sprague-Dawley rats for one year. Toxicol Sci 2000;53(2):377-391. https://doi.org/10.1093/toxsci/53.2.377
  37. Tsakiris S, Angelogianni P, Schulpis KH, Stavridis JC. Protective effect of L-phenylalanine on rat brain acetylcholinesterase inhibition induced by free radicals. Clin Biochem 2000;33(2):103-106. https://doi.org/10.1016/S0009-9120(99)00090-9
  38. Vincent DR, Bradshaw WS, Booth GM, Seegmiller RE, Allen SD. Effect of PCB and DES on rat monoamine oxidase, acetylcholinesterase, testosterone, and estradiol ontogeny. Bull Environ Contam Toxicol 1992;48(6):884-893.
  39. Antoniades C, Carageorgiou H, Tsakiris S. Effects of (-)deprenyl (selegiline) on acetylcholinesterase and Na(+),K(+)-ATPase activities in adult rat whole brain. Pharmacol Res 2002;46(2):165-169. https://doi.org/10.1016/S1043-6618(02)00090-7

Cited by

  1. l-Theanine alleviates the neuropathological changes induced by PCB (Aroclor 1254) via inhibiting upregulation of inflammatory cytokines and oxidative stress in rat brain vol.42, pp.None, 2014, https://doi.org/10.1016/j.etap.2016.01.008
  2. Modulatory role of Co-enzyme Q10 on methionine and choline deficient diet-induced non-alcoholic steatohepatitis (NASH) in albino rats vol.42, pp.3, 2014, https://doi.org/10.1139/apnm-2016-0320
  3. Influence of Chronic Coenzyme Q10 Supplementation on Cognitive Function, Learning, and Memory in Healthy and Diabetic Middle-Aged Rats vol.77, pp.2, 2019, https://doi.org/10.1159/000495520
  4. Renal changes and apoptosis caused by subacute exposure to Aroclor 1254 in selenium-deficient and selenium-supplemented rats vol.71, pp.2, 2014, https://doi.org/10.2478/aiht-2020-71-3360
  5. Endocrine disruptors also function as nervous disruptors and can be renamed endocrine and nervous disruptors (ENDs) vol.8, pp.None, 2021, https://doi.org/10.1016/j.toxrep.2021.07.014