• Title/Summary/Keyword: Coefficient of heating performance

Search Result 206, Processing Time 0.028 seconds

A Study of Air-source Heat Pump Performance Analysis for Replacing Night Time Electric Heating Boiler (심야전기보일러 대체용 공기열 히트펌프 성능평가)

  • Jo, J.Y.;Jung, H;Lee, C.H.
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.3
    • /
    • pp.81-85
    • /
    • 2011
  • The night time electric cost is cheaper due to electric supply and demand policy in Korea from 1985. Currently about 900,000 customers are using night time electric heating boilers and this causes shift of peak demand time to night in winter and increase of deficit spending. To solve this problem, replacing night time electric heating boiler by air-source heat pump using night time electricity has been proposed. An air-source heat pump can provide efficient heating equipment especially in a warm climate. For estimating the night time electric heat pump COP(Coefficient of Performance), Korean Standard KS C 9306:2010 and European Standard EN-14511:2004 is available. SCOP(Seasonal COP) using European weather bin data is also calculated. SCOP is not available yet but European Committee for Standardization will establish a standard in the near future. The evaluation result show that the replacing night time electric heating boiler by heat pump can be possible.

Heating Performance of Horizontal Geothermal Heat Pump System for Protected Horticulture (시설원예용 수평형 지열히트펌프의 난방 성능 해석)

  • Kang, Youn-Ku;Ryou, Young-Sun;Kang, Geum-Choon;Paek, Yee;Kim, Young-Joong
    • Journal of Biosystems Engineering
    • /
    • v.32 no.1 s.120
    • /
    • pp.30-36
    • /
    • 2007
  • Geothermal heat pump systems use the earth as a heat source in heating mode and a heat sink in cooling mode. These systems can be used for heating or cooling systems in farm facilities such as greenhouses for protected horticulture, cattle sheds, mushroom house, etc. A horizontal type means that a geothermal heat exchanger is laid in the trench buried in 1.2 to 1.8 m depth. Because a horizontal type has advantages of low installation, operation and maintenance costs compared to a vertical type, it is easy to be adopted to agriculture. In this study, to heat and cool farm facilities and obtain basic data for practical application of horizontal geothermal heat pump systems in agriculture, a horizontal geothermal heat pump system of 10 RT scale was installed in greenhouse. Heating performance of this system was estimated. The horizontal geothermal heat pump used in this study had heating COP of 4.57 at soil temperature of 14$^{\circ}C$ for depth of 1.75m and heating COP of 3.75 at soil temperature of 7$^{\circ}C$ for the same depth. The stratification of water temperature in heat tank appeared during the whole heat rejection period.

Analysis of Thermal Performance of Solar Hot-Water and Heating System with Baffle Storage Tank (태양열이용 Baffle식 축열조를 갖는 급탕난방시스템의 열성능 해석)

  • Suh, Jeong-Se;Yi, Chung-Seub;Yoon, Ji-Hoon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.11
    • /
    • pp.805-811
    • /
    • 2010
  • A numerical study has been performed to investigate the thermal performance of solar heating system with baffle type of storage tank by using the commercial code TRNSYS. As a result, the solar fraction depends strongly on the efficiency and heat loss coefficient of solar collector as well as the heating capacity of house and the water temperature supplied to the shower. In addition, the solar fraction has been basically ranked to higher level in baffle type of storage tank than typical type of single storage tank for the range of operation condition.

HEATING PERFORMANCE OF AIR SOURCE HEAT PUMP WITH HEAT REGENERATIVE DEVICE USING FIBER BELT

  • Ryou, Y.S.;Chang, J.T.;Kim, Y.J.;Kang, G.C.;Yun, J.H.;Lee, K.J.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11c
    • /
    • pp.647-653
    • /
    • 2000
  • In this research the heat regenerative technology was employed to eliminate frosting on evaporator coil and improve COP of the heat pump system. This heat regenerative device(HRD) has very simple structure consisting a geared motor and a porous fiber belt passing through alternatively between cold and warm air duct. The laboratory test showed that the heat pump system with HRD yielded an impressive COP higher than 3.5 at the outside air temperature of $-7^{circ}C$ in heating mode.

  • PDF

A Comparative Analysys of Window Energy Performance According to the Difference Between Actual size and Standard size (창호의 성능인증 규격 기준과 면적 변화에 따른 에너지성능 비교분석)

  • Kim, Seong-Beom;Lee, Su-Yeul;Kim, Dong-Yoon;Choi, Won-Ki
    • Journal of the Korean Solar Energy Society
    • /
    • v.40 no.1
    • /
    • pp.49-60
    • /
    • 2020
  • This study reviewed selected specific windows and reviewed the window performance certification criteria including KS F 2278 and KS L 9107 and analyzed the change in performance based on the change of area. This study also compared the heating and cooling loads of an apartment house applied with window performance reviewed in consideration of insulation and SHGC performance and actual size based on KS F 2278. The analyzed window was a double window composed of aluminum and PVC and the building was the apartment house model of 141 ㎡. The analysis results were as follows. First, as the window glass's thermal performance is superior to frame, the performance degraded in reduced area. In case of selected window, the 1 m × 1m window's thermal performance and SHGC decreased by 35% and 37% respectively compared to 2 m × 2 m window. Secondly, in the comparison of performance for increasing area with 2 m × 2 m and 3 m × 3 m windows, the 3 m × 3 m window's thermal performance and SHCG increased about 14%. Third, in the comparison of heating and cooling loads of the analyzed model considering the apartment house model applied with window performance derived from KS F 2278 and actual figures, the model's total heating and cooling loads increased by 33% with cooling decreasing by 36% and heating increasing by 77%. Above analysis results show that evaluation of window performance based on criteria such as KS F 2278 and KS L 9107 may lead to distortion of performances different from actual products. Thus, it is necessary to suggest new evaluation criteria.

Greenhouse Heating Technology Development by using Riverbank Filtration Water (강변여과수를 이용한 온실난방기술 개발)

  • Moon, Jong-Pil;Lee, Sung-Hyoun;Kwon, Jin-Kyung;Kang, Youn-Ku;Ryou, Young-Sun;Lee, Su-Jang
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.53 no.6
    • /
    • pp.145-152
    • /
    • 2011
  • In order to heat greenhouse nearby river channel, riverbank filtration water source heat pump was developed for getting plenty of heat flux from geothermal energy. Recharging well, thermal storage tank with separating insulation plate and filtering tank for eliminating iron, manganese were mainly developed for making the coefficient of performance (COP) of heat pump higher. Heating system using riverbank filtration water source heat pump was installed at a paprika greenhouse in the Jinju region where a single fold of vinyl cover and 2 layers of horizontal thermal curtain were installed as a part of temperature keeping and heat insulation with a greenhouse area of 3,185 $m^2$. 320,000 kcal/h was supplied for performing a site application tests. A greenhouse heating test was performed from Feb. 1, 2011 to Apr. 30, 2011. As the result of that, COPh of the heat pump was measured in the range of 4.0~4.5, while COPS of the system was represented as 2.9~3.3. COP measured of the heat pump was very good and well responded to indoor heating temperature of the environment control system of a greenhouse.

Defrosting Behavior of Fin-Tube Heat Exchanger with PTC Heating Sheet

  • Jhee, Sung;Lee, Kwan-Soo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.9 no.1
    • /
    • pp.29-38
    • /
    • 2001
  • In this paper, the defrosting characteristics of a PTC heating sheet is investigated by means of a defrosting heat source for the fin-tube heat exchanger in a refrigerator The defrosting characteristics of the PTC heating sheet are examined and compared with those of a conventional electric heater experimentally. It is found that the characteristics of the water draining rate with the defrosting time show a smoothly oscillating pattern when the PTC heating sheet Is used, and the drained water is completely melted. The defrosting efficiency of the PTC heating sheet is found to be about 75%, which is about 25% higher than that of the electric heater. Also, the reduction of the defrosting time and the increment of the defrosting efficiency may be obtained by improving the arrangement of the heating elements of the healing sheet. It is shown that the defrosting time of the PTC heating sheet increases linearly with the amount of frost, whereas the defrosting efficiency is nearly constant. When applying the PTC heating sheet to the refrigerating system, one should notice the fact that the defrosting performance of the PTC heating sheet may be degraded due to the repetitive operations.

  • PDF

Heating Performance of Heat Pump System Using Dual Heat Source and Its Operation Characteristics (이중 열원 히트펌프 시스템의 난방 성능과 운전 특성)

  • Lim, Hyojae;Sohn, Byonghu
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.17 no.2
    • /
    • pp.30-41
    • /
    • 2021
  • This paper presents the heating performance analysis results of a heat pump system using a dual heat source. In this paper, a dual heat source refers to the ground-coupled heat exchanger using both a surface water heat exchanger (SWHE) and a vertical ground heat exchanger (VGHE). In order to evaluate the system performance, we installed a monitoring system to measure the temperature and power consumption of a heat pump and then collected operation data with 4 different load burdened ratios of the dual heat source heat exchanger. During the whole measurement period, the average heating capacity of a water-to-water heat pump unit was 37.3 kW. In addition, the compressor of the heat pump consumed 9.4 kW of power, while the circulating pump of the dual heat source heat exchanger used 6.7 kW of power. Therefore the average heating coefficient of performance (COP) for the heat pump unit was 4.0, while the entire system including the circulating pump was 2.7. Finally, the parallel use of SWHE and VGHE was beneficial to the system performance; however, further researches are needed to optimize the design data for various load ratios of the dual heat source heat exchanger.

A Study on Optimization Development of Peltier Air-conditioning System (펠티어 냉난방시스템 최적화 기술에 관한 연구)

  • Park, Sanghoon;Jeong, Soojin;Park, Youngwoo;Park, Ukyung;Song, Beomjung
    • Journal of Institute of Convergence Technology
    • /
    • v.3 no.1
    • /
    • pp.19-23
    • /
    • 2013
  • This study is concerned with air-conditioning system in use of thermoelectric device. It is introduced that the well designed structures for better cooling & heating performance with high efficiency. And also it is performed that the system performance test of four types trial products for the use of hybrid commercial vehicle. System performance is affected by many component parts, especially heat sink design & power control method. It is applied that dual extrusive fin tube with buffer zone for the effective radiating of circulating liquid in tube. And also it is applied that power supply method with constant-current system. It is attained that system cooling capacity is 1.2kW, COP is 0.95.

  • PDF

Study on thermal performance of vacuum window with various low-ε coating glasses (저방사 코팅이 진공창의 열성능에 미치는 영향)

  • Cho, S.H.;Tae, C.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.9 no.3
    • /
    • pp.300-311
    • /
    • 1997
  • A theoretical method was developed to analyze the effect of low-$\varepsilon$ coatings which have influence on thermal performance of vacuum windwo glazing and double pane glazing. The overall heat transfer coefficient(U) value and thermal performance were analyzed by theroretical method on various kins of windows. TRNSYS program was used to analyze total heating and cooling energy consumption on the model building which has various windows. As the result, better thermal insulation can be achieved on the vacuum window glazing than double pane glazing when low-$\varepsilon$ coating was done on the surface of glass. Total heating and cooling energy consumption was almost same on the double pane window glazing but was lessened on the vacuum window glazing when the window size of south direction increased. Therefore, low-$\varepsilon$ coating was very necessary for vacuum window glazing in order to improve thermal insulation performance and efficient energy conservation can be achieved by vacuum window glazing at the real building which has large window.

  • PDF