• Title/Summary/Keyword: Coefficient of Drag

Search Result 555, Processing Time 0.023 seconds

Prediction of Stage Discharge Curve and Lateral Distribution of Unit Discharge in an Arbitrary Cross Section Channel with Floodplain Vegetation (홍수터 식생을 고려한 불규칙한 단면에서의 수위-유량 곡선 및 단위유량 횡분포 예측)

  • Kim, Tae-Beom;Jang, Ji-Yeon;Shin, Jae-Kook;Choi, Sung-Uk
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.2
    • /
    • pp.157-167
    • /
    • 2011
  • A numerical model was developed to predict the stage-discharge curve and lateral distribution of unit discharge in open channels with nonuniform cross section or compound open-channels. The governing equation is the one-dimensional momentum equation based on assumptions of the steady and uniform flow conditions in the longitudinal direction and the uniform water surface elevation in a cross section. Vegetative drag force term was included in governing equation in order to reflect the effect of floodplain vegetation on the flow characteristics. Finite element method was applied to obtain the numerical solution of the governing equation. Stage-discharge curve and lateral distribution of unit discharge for a given water surface are calculated based on input data, such as the cross sectional geometry, Manning's roughness coefficient, vegetative information and longitudinal slope of channel bed. The developed model was verified by comparing the calculated results with the observed data and the results of Darby and Thorne's(1996) model and the nonlinear k-$\epsilon$ model. The verified model was applied to estimate the upstream boundary conditions in two-dimensional flow model. The numerical results using laterally distributed unit discharge were compared with those obtained using uniformly distributed unit discharge in two-dimensional flow model.

Study on the Suitability of Composite Materials for Enhancement of Automotive Fuel Economy (자동차 연비향상을 위한 복합재료 적용 타당성에 관한 연구)

  • Ju, Yeon Jin;Kwon, Young-Chul;Choi, Heung Soap
    • Composites Research
    • /
    • v.32 no.5
    • /
    • pp.284-289
    • /
    • 2019
  • In the present paper, the dynamic force-moment equilibrium equations, driving power and energy equations are analyzed to formulate the equation for fuel economy(km/liter) equivalent to the driving distance (km) divided by the fuel volume (liter) of the vehicle, a selected model of gasoline powered KIA K3 (1.6v). In addition, the effects of the dynamic parameters such as speed of vehicle (V), vehicle total weight(M), rolling resistance ($C_r$) between tires and road surface, inclined angle of road (${\theta}$), as well as the aerodynamic parameters such as drag coefficient ($C_d$) of vehicle, air density(${\rho}$), cross-sectional area (A) of vehicle, wind speed ($V_w$) have been analyzed. And the possibility of alternative materials such as lightweight metal alloys, fiber reinforced plastic composite materials to replace the conventional steel and casting iron materials and to reduce the weight of the vehicle has been investigated by Ashby's material index method. Through studies, the following results were obtained. The most influencing parameters on the fuel economy at high speed zone (100 km/h) were V, the aerodynamic parameters such as $C_d$, A, ${\rho}$, and $C_r$ and M. While at low speed zone (60 km/h), they are, in magnitude order, dynamic parameters such as V, M, $C_r$ and aerodynamic ones such as $C_d$, A, and ${\rho}$, respectively.

The hydrodynamic characteristics of the canvas kite - 2. The characteristics of the triangular canvas kite - (캔버스 카이트의 유체역학적 특성에 관한 연구 - 2. 삼각형 캔버스 카이트의 특성 -)

  • Bae, Bong-Seong;Bae, Jae-Hyun;An, Heui-Chun;Lee, Ju-Hee;Shin, Jung-Wook
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.40 no.3
    • /
    • pp.206-213
    • /
    • 2004
  • As far as an opening device of fishing gears is concerned, applications of a kite are under development around the world. The typical examples are found in the opening device of the stow net on anchor and the buoyancy material of the trawl. While the stow net on anchor has proved its capability for the past 20 years, the trawl has not been wildly used since it has been first introduced for the commercial use only without sufficient studies and thus has revealed many drawbacks. Therefore, the fundamental hydrodynamics of the kite itself need to ne studied further. Models of plate and canvas kite were deployed in the circulating water tank for the mechanical test. For this situation lift and drag tests were performed considering a change in the shape of objects, which resulted in a different aspect ratio of rectangle and trapezoid. The results obtained from the above approaches are summarized as follows, where aspect ratio, attack angle, lift coefficient and maximum lift coefficient are denoted as A, B, $C_L$ and $C_{Lmax}$ respectively : 1. Given the triangular plate, $C_{Lmax}$ was produced as 1.26${\sim}$1.32 with A${\leq}$1 and 38$^{\circ}$B${\leq}$42$^{\circ}$. And when A${\geq}$1.5 and 20$^{\circ}$${\leq}$B${\leq}$50$^{\circ}$, $C_L$ was around 0.85. Given the inverted triangular plate, $C_{Lmax}$ was 1.46${\sim}$1.56 with A${\leq}$1 and 36$^{\circ}$B${\leq}$38$^{\circ}$. And When A${\geq}$1.5 and 22$^{\circ}$B${\leq}$26$^{\circ}$, $C_{Lmax}$ was 1.05${\sim}$1.21. Given the triangular kite, $C_{Lmax}$ was produced as 1.67${\sim}$1.77 with A${\leq}$1 and 46$^{\circ}$B${\leq}$48$^{\circ}$. And when A${\geq}$1.5 and 20$^{\circ}$B${\leq}$50$^{\circ}$, $C_L$ was around 1.10. Given the inverted triangular kite, $C_{Lmax}$ was 1.44${\sim}$1.68 with A${\leq}$1 and 28$^{\circ}$B${\leq}$32$^{\circ}$. And when A${\geq}$1.5 and 18$^{\circ}$B${\leq}$24$^{\circ}$, $C_{Lmax}$ was 1.03${\sim}$1.18. 2. For a model with A=1/2, an increase in B caused an increase in $C_L$ until $C_L$ has reached the maximum. Then there was a tendency of a very gradual decrease or no change in the value of $C_L$. For a model with A=2/3, the tendency of $C_L$ was similar to the case of a model with A=1/2. For a model with A=1, an increase in B caused an increase in $C_L$ until $C_L$ has reached the maximum. And the tendency of $C_L$ didn't change dramatically. For a model with A=1.5, the tendency of $C_L$ as a function of B was changed very small as 0.75${\sim}$1.22 with 20$^{\circ}$B${\leq}$50$^{\circ}$. For a model with A=2, the tendency of $C_L$ as a function of B was almost the same in the triangular model. There was no considerable change in the models with 20$^{\circ}$B${\leq}$50$^{\circ}$. 3. The inverted model's $C_L$ as a function of increase of B reached the maximum rapidly, then decreased gradually compared to the non-inverted models. Others were decreased dramatically. 4. The action point of dynamic pressure in accordance with the attack angle was close to the rear area of the model with small attack angle, and with large attack angle, the action point was close to the front part of the model. 5. There was camber vertex in the position in which the fluid pressure was generated, and the triangular canvas had large value of camber vertex when the aspect ratio was high, while the inverted triangular canvas was versa. 6. All canvas kite had larger camber ratio when the aspect ratio was high, and the triangular canvas had larger one when the attack angle was high, while the inverted triangluar canvas was versa.

The hydrodynamic characteristics of the canvas kite - 1. The characteristics of the rectangular, trapezoid canvas kite - (캔버스 카이트의 유체역학적 특성에 관한 연구 - 1. 사각형 캔버스 카이트의 특성 -)

  • Bae, Bong-Seong;Bae, Jae-Hyun;An, Heui-Chun;Lee, Ju-Hee;Shin, Jung-Wook
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.40 no.3
    • /
    • pp.196-205
    • /
    • 2004
  • As far as an opening device of fishing gears is concerned, applications of a kite are under development around the world. The typical examples are found in the opening device of the stow net on anchor and the buoyancy material of the trawl. While the stow net on anchor has proved its capability for the past 20 years, the trawl has not been wildly used since it has been first introduced for the commercial use only without sufficient studies and thus has revealed many drawbacks. Therefore, the fundamental hydrodynamics of the kite itself need to ne studied further. Models of plate and canvas kite were deployed in the circulating water tank for the mechanical test. For this situation lift and drag tests were performed considering a change in the shape of objects, which resulted in a different aspect ratio of rectangle and trapezoid. The results obtained from the above approaches are summarized as follows, where aspect ratio, attack angle, lift coefficient and maximum lift coefficient are denoted as A, B, $C_L$ and $C_{Lmax}$ respectively : 1. Given the rectangular plate, $C_{Lmax}$ was produced as 1.46${\sim}$1.54 with A${\leq}$1 and 40$^{\circ}$${\leq}$B${\leq}$42$^{\circ}$. And when A${\geq}$1.5 and 20$^{\circ}$${\leq}$B${\leq}$22$^{\circ}$, $C_{Lmax}$ was 10.7${\sim}$1.11. Given the rectangular canvas, $C_{Lmax}$ was 1.75${\sim}$1.91 with A${\leq}$1 and 32$^{\circ}$${\leq}$B${\leq}$40$^{\circ}$. And when A${\geq}$1.5 and 18$^{\circ}$${\leq}$B${\leq}$22$^{\circ}$, $C_{Lmax}$ was 1.24${\sim}$1.40. Given the trapezoid kite, $C_{Lmax}$ was produced as 1.65${\sim}$1.89 with A${\leq}$1.5 and 34$^{\circ}$${\leq}$B${\leq}$44$^{\circ}$. And when A=2 and B=14${\sim}$48, $C_L$ was around 1. Given the inverted trapezoid kite, $C_{Lmax}$ was 1.57${\sim}$1.74 with A${\leq}$1.5 and 24$^{\circ}$${\leq}$B${\leq}$36$^{\circ}$. And when A=2, $C_{Lmax}$ was 1.21 with B=18$^{\circ}$. 2. For a model with A=1/2, an increase in B caused an increase in $C_L$ until $C_L$ has reached the maximum. Then there was a tendency of a gradual decrease in the value of $C_L$ and in particular, the rectangular kite showed a more rapid decrease. For a model with A=2/3, the tendency of $C_L$ was similar to the case of a model with A=1/2 but the tendency was a more rapid decrease than those of the previous models. For a model with A=1, and increase in B caused an increase in $C_L$ until $C_L$ has reached the maximum. Soon after the tendency of $C_L$ decreased dramatically. For a model with A=1.5, the tendency of $C_L$ as a function of B was various. For a model with A=2, the tendency of $C_L$ as a function of B was almost the same in the rectangular and trapezoid model. There was no considerable change in the models with 20$^{\circ}$${\leq}$B${\leq}$50$^{\circ}$. 3. The tendency of kite model's $C_L$ in accordance with increase of B was increased rapidly than plate models until $C_L$ has reached the maximum. Then $C_L$ in the kite model was decreased dramatically but in the plate model was decreased gradually. The value of $C_{Lmax}$ in the kite model was higher than that of the plate model, and the kite model's attack angel at $C_{Lmax}$ was smaller than the plate model's. 4. In the relationship between aspect ratio and lift force, the attack angle which had the maximum lift coefficient was large at the small aspect ratio models, At the large aspect ratio models, the attack angle was small. 5. There was camber vertex in the position in which the fluid pressure was generated, and the rectangular & trapezoid canvas had larger value of camber vertex when the aspect ratio was high, while the inverted trapezoid canvas was versa. 6. All canvas kite had larger camber ratio when the aspect ratio was high, and the rectangular & trapezoid canvas had larger one when the attack angle was high.

Development of KD- Propeller Series using a New Blade Section (새로운 날개단면을 이용한 KD-프로펠러 씨리즈 개발)

  • J.T. Lee;M.C. Kim;J.W. Ahn;H.C. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.28 no.2
    • /
    • pp.52-68
    • /
    • 1991
  • A new propeller series is developed using the newly developed blade section(KH18 section) which behaves better cavitation characteristics and higher lift-drag ratio at wide range of angle-of-attack. The pitch and camber distributions are disigned in order to have the same radial and chordwise loading distribution with the selected circumferentially averaged wake input. Since the geometries of the series propeller, such as chord length, thickness, skew and rate distribations, are selected by regression of the recent full scale propeller geometric data, the performance prediction of a propeller at preliminary design stage can be mure realistic. Number of blades of the series propellers is 4 and the expanded blade area ratios are 0.3, 0.45, 0.6 and 0.75. Mean pitch ratios are selected as 0.5, 0.65, 0.8, 0.75 and 1.1 for each expanded area ratio. The new propeller series is composed of 20 propellers and is named as KD(KRISO-DAEWOO) propeller series. Propeller open water tests are performed at the experimental towing tank, and the cavitation observation tests and fluctuating pressure measurements are carried out at the cavitation tunnel of KRISO. $B_{P}-\delta$ curves, which can be used to select the optimum propeller diameter at the preliminary design stage, are derived from a regression analysis of the propeller often water test results. The KD-cavitation chart is derived from the cavitation observation test results by choosing the local maximum lift coefficient and the local cavitation number as parameters. The caviy extent of a propeller can be predicted more accurately by using the KD-cavitation chart at a preliminary design stage, since it is derived from the results of the cavitation observation tests in the selected ship's wake, whereas the existing cavitation charts, such as the Burrill's cavitation chart, are derived from the test results in uniform flow.

  • PDF