• Title/Summary/Keyword: Coefficient analysis

Search Result 10,708, Processing Time 0.038 seconds

A comparison study of crude protein contents obtained utilizing the Kjeldahl method and Dumas combustion method in foods (식품 중 조단백질 정량을 위한 켈달법과 듀마스법 비교 연구)

  • Hwang, Sun Hye;Koo, Minseon;Jo, Saerom;Cho, Yong Sun
    • Analytical Science and Technology
    • /
    • v.33 no.3
    • /
    • pp.143-150
    • /
    • 2020
  • In this study, crude protein was analyzed and compared using the Kjeldahl and Dumas method for cereals, meat, sea food, chemical samples and vegetable. The nine kinds of cereal, including white rice, were analyzed. In the result, the correlation coefficient of the Kjeldahl and the Dumas method indicated that there was no significant difference between them, showing 0.994 of it and 0.956 of p-value. Also, for the nine kinds of meat, five kinds of sea food, three kinds of chemical samples, four kinds of vegetable, there was little difference about the correlation coefficient of the Kjeldahl and the Dumas method, showing 0.9725, 0.9879, 0.9985 and 0.9873 of it and 0.947, 0.761, 0.997 and 0.727 of p-value, respectively. For the samples of meat, they were not fully homogenized, so the reproducibility of them was not good in the Dumas method, which is required to be analyzed in small size. However, when vegetables, which contain a lot of nitrates, are analyzed using Kjeldahl, they showed the lower reproducibility compared to the result of using Dumas because they are not completely decomposed in the Kjeldahl method. In the Dumas method, the samples should be homogenized because only 0.1 g sample is used. In short, neither of the Kjeldahl and Dumas methods are an accurate quantitative test because both of them do not directly analyze pure protein but measure the amount of protein based on analysis of nitrogen. Therefore, it is important of selecting the appropriate analysis method considering the characteristics of samples.

Static Analysis of Frame Structures Using Transfer of Stiffness Coefficient (강성계수의 전달을 이용한 골조구조물의 정적해석)

  • 문덕홍;최명수;정하용
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.10a
    • /
    • pp.287-294
    • /
    • 2001
  • In static analysis of a variety of structures, the matrix method of structural analysis is the most widely used and powerful analysis method. However, this method has drawback requiring high-performance computers with many memory units and fast processing units in the case of analyzing complex and large structures accurately. Therefore, it's very difficult to analyze these structures accurately in personal computers. For overcoming the drawback of the matrix method of structural analysis, authors suggest transfer stiffness coefficient method(TSCM). The TSCM is very suitable to a personal computer because the concept of the TSCM is based on the transfer of the stiffness coefficient for an analytical structure. In this paper, the static analysis algorithm for frame structures is formulated by the TSCM. We confirm the validity of the proposed method through the compare of computation results by the TSCM and the NASTRAN.

  • PDF

Thermal Analysis of Continuous Casting Mold (연속주조 몰드의 열해석)

  • 이종선
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.77-83
    • /
    • 1998
  • This study is object to thermal analysis of continuous casting mold. A two-dimensional transient finite element model was developed to compute the temperature distribution and stress behavior for continuous casting mold. For thermal analysis using analysis result from FEM code. In other to thermal analysis of continuous casting mold, many variables such as casting speed, cooling condition, film coefficient, convection and load condition re considered.

  • PDF

Thermal Analysis of Continuous Casting Nickel-Coated Mold (니켈도금된 연속주조 몰드의 열해석)

  • 원종진
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.287-292
    • /
    • 1999
  • This study is object to thermal analysis of continuous casting nickel-coated mold. A two-dimensional transient finite element model was developed to compute the temperature distribution and stress behavior for continuous casting nickel-coated mold. For thermal analysis using analysis result from FEM code. In other to thermal analysis of continuous casting nickel-coated mold, many variables such as casting speed, cooling condition, film coefficient, convection and load condition are considered.

  • PDF

Thermal Analysis of Continuous Casting Mold (연속주조 몰드의 열해석)

  • 조동현
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.6
    • /
    • pp.43-49
    • /
    • 1999
  • This study is object to thermal analysis of continuous casting mold. A two-dimensional transient finite element model was developed to compute the temperature distribution and stress behavior for continuous casting mold. For thermal analysis using analysis result from FEM code. In order to thermal analysis of continuous casting mold, many variables such as casting speed, cooling condition, film coefficient, convection and load condition are considered.

  • PDF

Structural Analysis of Continuous Casting Mold (연속주조 몰드의 구조해석)

  • 원종진
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.281-286
    • /
    • 1999
  • This study is object to structural analysis of continuous casting mold. A two-dimensional finite element model was developed to compute the temperature distribution, stress and strain behavior for continuous casting mold. For structural analysis using thermal analysis result from FEM code. In other to structural analysis of continuous casting mold, many variables such as casting speed, cooling condition, film coefficient, convection and load condition are considered.

  • PDF

Structural Analysis Comparison of Continuous Casting Mold (연속주조 몰드의 구조해석 비교)

  • 원종진;이종선;홍석주;이현곤
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.181-187
    • /
    • 2000
  • This study is object to structural analysis comparison of continuous casting mold. A two-dimensional finite element model was developed to compute the temperature distribution, thermal stress and thermal strain behavior for continuous casting mold. For structural analysis using thermal analysis result from ANSYS. In other to structural analysis of continuous casting mold, many variables such as casting speed, cooling condition, film coefficient, convection and load condition are considered.

  • PDF

Thermal Analysis Comparison of Continuous Casting Mold (연속주조 몰드의 열해석 비교)

  • 원종진;이종선;윤희중;이현곤
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.200-205
    • /
    • 2000
  • This study is object to thermal analysis comparison of continuous casting mold. A two-dimensional transient finite element model was developed to compute the temperature distribution for continuous casting mold. For thermal analysis using analysis result from ANSYS. In other to thermal analysis of continuous casting mold, many variables such as casting speed, cooling condition, film coefficient, convection and load condition are considered.

  • PDF

Evaluation of Field Compaction Density by Non-nuclear Density Gauge (다짐밀도 측정장비(Non-nuclear Type)를 사용한 현장 다짐밀도 평가)

  • Kim, Yeong Min;Im, Jeong Hyuk;Yang, Sung Lin;Kim, Ki Hyun;Hwang, Sung Do;Jeong, Kyu Dong
    • International Journal of Highway Engineering
    • /
    • v.17 no.1
    • /
    • pp.51-58
    • /
    • 2015
  • PURPOSES : The objective of this study is to compare the densities of asphalt pavements measured both in the field and in the laboratory, and also to evaluate the applicability of field density measuring equipment, such as the pavement quality indicator (PQI), by using statistical analysis. METHODS : For the statistical analysis of the density measured from asphalt pavement, student t-tests and a coefficient of correlation are investigated. In order to compare the measured densities, two test sections are prepared, with a base layer and an intermediate layer constructed. Each test section consists of 9 smaller sections. During construction, the field densities are measured for both layers (base and intermediate) in each section. Core samples are extracted from similar regions in each section, and moved to the laboratory for density measurements. All the measured densities from both the field and laboratory observations are analyzed using the selected statistical analysis methods. RESULTS AND CONCLUSION : Based on an analysis of measured densities, analysis using a correlation coefficient is found to be more accurate than analysis using a student t-test. The correlation coefficient (R) between the field density and the core density is found to be very low with a confidence interval less than 0.5. This may be the result of inappropriate calibration of the measuring equipment. Additionally, the correlation coefficient for the base layer is higher than for the intermediate layer. Finally, we observe that prior to using the density measuring equipment in the field, a calibration process should be performed to ensure the reliability of measured field densities.

Structural Analysis of Axisymmetric Conical Shells Using Finite Element-Transfer Stiffness Coefficient Method (유한요소-전달강성계수법을 이용한 축대칭 원추형 셸의 구조해석)

  • Choi, Myung-Soo;Byun, Jung-Hwan;Yeo, Dong-Jun
    • Journal of Power System Engineering
    • /
    • v.19 no.1
    • /
    • pp.38-44
    • /
    • 2015
  • Various finite elements have been studied and developed to analyze a variety of structures in the finite element method(FEM). The transfer stiffness coefficient method(TSCM) is an effective algorithm for structural analysis but the structures which can be applied were limited. In this paper, a computational algorithm for the structural analysis of axisymmetric conical shells under axisymmetric loading is formulated using the finite element-transfer stiffness coefficient method(FE-TSCM). The basic concept of FE-TSCM is the combination of the modeling technique of FEM and the transfer technique of TSCM. The FE-TSCM has all the advantages of both FEM and TSCM. After carrying out the structural analysis of axisymmetric conical shells using FEM, FE-TSCM, and analytical method we compare the computational results of FE-TSCM with those of the other methods in terms of computational accuracy.