• Title/Summary/Keyword: Coefficient

Search Result 29,937, Processing Time 0.059 seconds

A Comparison Study of Alkalinity and Total Carbon Measurements in $CO_2$-rich Water (탄산수의 알칼리도 및 총 탄소 측정방법 비교 연구)

  • Jo, Min-Ki;Chae, Gi-Tak;Koh, Dong-Chan;Yu, Yong-Jae;Choi, Byoung-Young
    • Journal of Soil and Groundwater Environment
    • /
    • v.14 no.3
    • /
    • pp.1-13
    • /
    • 2009
  • Alkalinity and total carbon contents were measured by acid neutralizing titration (ANT), back titration (BT), gravitational weighing (GW), non-dispersive infrared-total carbon (NDIR-TC) methods for assessing precision and accuracy of alkalinity and total carbon concentration in $CO_2$-rich water. Artificial $CO_2$-rich water(ACW: pH 6.3, alkalinity 68.8 meq/L, $HCO_3^-$ 2,235 mg/L) was used for comparing the measurements. When alkalinity measured in 0 hr, percent errors of all measurement were 0~12% and coefficient of variation were less than 4%. As the result of post-hoc analysis after repeated measure analysis of variance (RM-AMOVA), the differences between the pair of methods were not significant (within confidence level of 95%), which indicates that the alkalinity measured by any method could be accurate and precise when it measured just in time of sampling. In addition, alkalinity measured by ANT and NDIR-TC were not change after 24 and 48 hours open to atmosphere, which can be explained by conservative nature of alkalinity although $CO_2$ degas from ACW. On the other hand, alkalinity measured by BT and GW increased after 24 and 48 hours open to atmosphere, which was caused by relatively high concentration of measured total carbon and increasing pH. The comparison between geochemical modeling of $CO_2$ degassing and observed data showed that pH of observed ACW was higher than calculated pH. This can be happen when degassed $CO_2$ does not come out from the solution and/or exist in solution as $CO_{2(g)}$ bubble. In that case, $CO_{2(g)}$ bubble doesn't affect the pH and alkalinity. Thus alkalinity measured by ANT and NDIR-TC could not detect the $CO_2$ bubble although measured alkalinity was similar to the calculated alkalinity. Moreover, total carbon measured by ANT and NDIR-TC could be underestimated. Consequently, it is necessary to compare the alkalinity and total carbon data from various kind of methods and interpret very carefully. This study provide technical information of measurement of dissolve $CO_2$ from $CO_2$-rich water which could be natural analogue of geologic sequestration of $CO_2$.

Influence of lime and phosphorus application on nutrient uptake by corn in newly reclaimed acidic soils -I. With special reference to P sources and distribution of Zn among leaves (산성신개간토양(酸性新開墾土壤)에서 석회(石灰) 및 인산(燐酸)이 옥수수의 양분(養分) 흡수(吸收)에 미치는 영향(影響) -I. 인산비종(燐酸肥種)과 아연(亞鉛)의 흡수(吸收) 및 엽위별분포(葉位別分布))

  • Kim, Young Koo;Hong, Chong Woon;Oh, Yong Taeg
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.8 no.4
    • /
    • pp.189-194
    • /
    • 1975
  • On a newly reclaimed acidic soil, investigation was made to find out the influence of lime and P application at a largeg uantity on the uptake of Zn by corn and its distribution among the leaves, under afactorial combination with two levels of Zn, lime, and P. The results are summarized as following. 1. The application of lime for neutralization of soil significantly reduced the uptake of Zn by corn. 2. Liberal doses of P (5% of P absorption coefficient of soil; 500ppm) applied before sowing did not influence the uptake of Zn. 3. The concentration of Zn in bottom leaves better reflected the Zn uptake status of corn than the upper leaves. The concentration of Zn in bottom leaves responded clearly to the treatments of lime and Zn, while those of upper leaves tended to be constant unresponding to application of lime and Zn. 4. On the present experimental condition, the yield of corn was increased with the increase of P application. But the concentration of P in plant tissue remained constant under different P levels. 5. Application of lime (calcium hydroxide) on low P plots, depressed the yield of corn significantly. It was speculated that the lime applied at large dose made the applied P less available to corn.

  • PDF

Poential evapotranspiration analysis of suweon area (수원지방(水原地方)의 증발산량(蒸發散量) 분석(分析))

  • Shin, Yong Hwa;Hwang, Gye Seon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.9 no.1
    • /
    • pp.47-55
    • /
    • 1976
  • This study is conducted to find out potential evapotranspiration values computed by a reasonable formula which is well suited among the existing ones for Suweon area. Each formula based on the data from Suweon Agricultural Meteorological Station during 1964 to 1973. Five formulas which are Blanney-Criddle, Thornthwaite, Penman, Jensen-Haise and Truc have been applied for calculation of potential evapotanspiration. Results obtained are summarized as follows. 1. Potential evapotranspiration of Suweon area shows uni-modal distribution which maximum value occurs in summer and minimum value occurs in winter. Annual potential evapotranspiration computed by Blanney-Criddle formula is 1,377 mm and that computed by others ranges from 714mm to 896mm. 2. Potential evapotranspiration computed by Blanney-Criddle formula is higher value than that computed by others, and among the other formulas it's values show little differences. However, relationships between the former and the mean of four others is highly correlated. 3. In comparison with potential evapotranspiration computed by formulas and actual evapotranspiration for rice paddy which is already reported, value for crop coefficient may be 0.8 in local varities, 1.0 in Tongil varity on Blanney-Criddle formula, and 1.2 in local varities and 1.5 in Tongil varity on the mean of four other fomulas. 4. Five formulas may applied for calculation of potential evapotranspiration because of relatively good correlation among them. However Blanney-Criddle formula is one of recommendable ones, because it is easy to compute and requires less data in compare with other formulas.

  • PDF

Spatial Variation Analysis of Soil Characteristics and Crop Growth across the Land-partitioned Boundary II. Spatial Variation of Soil Chemical Properties (구획경계선(區劃境界線)의 횡단면(橫斷面)에 따른 토양특성(土壤特性)과 작물생육(作物生育)에 관한 공간변이성(空間變異性) 분석연구 II. 토양(土壤) 화학성(化學性)의 공간변이성(空間變異性))

  • Park, Moo-Eon;Yoo, Sun-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.22 no.4
    • /
    • pp.257-264
    • /
    • 1989
  • In order to study spatial variability of soil chemical properties across the land-partitioned boundary on Hwadong silt clay loam soil (Fine clayey, mixed, mesic family of Aquic Hapludalfs) in the experimental fie ld of the wheat and Barley Research Institute in Suwon, all measured data were analyzed by means of kriging, fractile diagram, smooth frequency distribution, and autocorrelation. Sampling for soil chemical property analysis was made at 225 intersections of 15x 15 grid with 10m interval from three soil depths (0-10cm, 25-35cm, 50-60cm) in the seven patitioned fields. 1. The coefficient of variance (CV) of various chemical properties varied from 5.4 to 72.7%. Soil pH was classified into the low variation group with CV smaller than 10%, while the other chemical properties belonged to the medium variation group with C.V. between 10 and 100% 2. The approximate number of soil samples for the determination of various chemical properties with error smaller than 10% were two for pH, ten for CEC, 15 for exchangeable Ca, 32 for total nitrogen content, 39 for exchangeable Mg, 40 for exchangeable K, 61 for exchangeable Na, 82 for organic matter content, 212 for available phosphate,. 3. Smooth frequency distribution and fractile diagram showed that available phosphate was in log-normal distribution while others were in normal distribution. 4. Serial correlation analysis revaled that the soil chemical properties had spatial dependence between two nearest neighbouring grid points. Autocorrelation analysis of chemcial properties measured between the serial grid points in the direction of south to north following land-partitioned boundary showed that the zone of influence showing stationarity ranged from 20 to 50m. In the direction of east to west accross land-partitioned boundary, the autocorrelogram of many chemical properies showed peaks with the periodic interval of 30m, which were similar to the partitioned land width. This reveals that the land-partitioned boundary causes soil variability.

  • PDF

Validation of the Korean version of Center for Epidemiologic Studies Depression Scale-Revised(K-CESD-R) (한국판 역학연구 우울척도 개정판(K-CESD-R)의 표준화 연구)

  • Lee, San;Oh, Seung-Taek;Ryu, So Yeon;Jun, Jin Yong;Lee, Kounseok;Lee, Eun;Park, Jin Young;Yi, Sang-Wook;Choi, Won-Jung
    • Korean Journal of Psychosomatic Medicine
    • /
    • v.24 no.1
    • /
    • pp.83-93
    • /
    • 2016
  • Objectives : The Center for Epidemiologic Studies Depression scale-Revised is a recently revised scale which has been reported as a valid tool for the assessment of depressive symptoms. It encompasses cardinal symptoms of depression described in the Diagnostic and Statistical Manual of Mental disorders, fourth edition. In this study, we assessed the reliability, validity and psychometric properties of the Korean version of the CESD-R(K-CESD-R). Methods : Forty-eight patients diagnosed as major depressive disorder, dysthymia, depressive disorder NOS according to the DSM-IV criteria using Mini International Neuropsychiatric Interview and 48 healthy controls were enrolled in this study. They were assessed with K-CESD-R, K-MADRS, PHQ-9, KQIDS-SR, STAI to check cross-validation. Statistical analyses were performed using calculation of Cronbach's alpha, Pearson correlation coefficient, Principal Component Analysis, ROC curve and optimal cut-off value. Results : The Cronbach's alpha of K-CESD-R was 0.98. The total score of K-CESD-R revealed significantly high correlations with those of K-MADRS, PHQ-9, KQIDS-SR(r=0.910, 0.966 and 0.920, p<0.001, respectively). Factor analysis showed two factors account for 76.29% of total variance. We suggested the optimal cut-off value of K-CESD-R as 13 according to analysis of the ROC curve which value sensitivity and specificity both equally. Conclusions : These Results showed that the K-CESD-R could be a reliable and valid scale to assess depressive symptoms. The K-CESD-R is expected as a useful and effective tool for screening and measuring depressive symptoms not only in outpatient clinic but also epidemiologic studies.

Analysis of Fungicide Prochloraz in Platycodi Radix by GC-ECD (GC-ECD를 이용한 한약재 길경(Platycodi Radix) 중 살균제 Prochloraz의 분석)

  • Oh, Gyeong-Seok;Yoon, Myung-sub;Yang, Seung-Hyun;Choi, Hoon
    • Korean Journal of Environmental Agriculture
    • /
    • v.40 no.4
    • /
    • pp.353-358
    • /
    • 2021
  • BACKGROUND: Prochloraz has been widely used as an imidazole fungicide on fruits and vegetables in Korea. Analytical approaches to evaluate prochloraz residues in herbal medicine are required for their safety management. In this study, we developed a GC-ECD method for quantitative determination of prochloraz in Platycodi Radix. The metabolite 2,4,6-trichlorophenol (2,4,6-T) was used as a target compound to evaluate total prochloraz residues as it is categorized to a representative residue definition of prochloraz. All residues containing 2,4,6-T were converted to 2,4,6-T and subjected to GC-ECD. METHODS AND RESULTS: In order to verify the applicability, the method was optimized for determining prochloraz and it metabolite 2,4,6-T in Platycodi Radix. Prochloraz and its metabolite 2,4,6-T residuals were extracted using acetone. The extract was diluted with and partitioned directly into dichloromethane to remove polar co-extractives in the aqueous phase. The extract was decomposed to 2,4,6-T, and then the partitioned ion-associate was finally purified by optimized aminopropyl solid-phase extraction (SPE). The limits of quantitation of the method (MLOQs) were 0.04 mg/kg and 0.02 mg/kg, respectively for prochloraz and 2,4,6-T, considering the maximum residue level (MRL) of prochloraz as 0.05 mg/kg in Platycodi Radix. Recovery tests were carried out at two levels of concentration (MLOQ, 10 MLOQ) and resulted in good recoveries (82.1-89.7%). Good reproducibilities were obtained (coefficient of variation < 2.8%), and the linearities of calibration curves were reasonable (r2 > 0.9986) in the range of 0.005-0.5 ㎍/mL. CONCLUSION(S): The method developed in this study was successfully validated to meet the guidelines required for quantitative determination of pesticides in herbal medicine. Thus, the method could be useful to monitor prochloraz institutionally in herbal medicine.

Long-term forecasting reference evapotranspiration using statistically predicted temperature information (통계적 기온예측정보를 활용한 기준증발산량 장기예측)

  • Kim, Chul-Gyum;Lee, Jeongwoo;Lee, Jeong Eun;Kim, Hyeonjun
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.12
    • /
    • pp.1243-1254
    • /
    • 2021
  • For water resources operation or agricultural water management, it is important to accurately predict evapotranspiration for a long-term future over a seasonal or monthly basis. In this study, reference evapotranspiration forecast (up to 12 months in advance) was performed using statistically predicted monthly temperatures and temperature-based Hamon method for the Han River basin. First, the daily maximum and minimum temperature data for 15 meterological stations in the basin were derived by spatial-temporal downscaling the monthly temperature forecasts. The results of goodness-of-fit test for the downscaled temperature data at each site showed that the percent bias (PBIAS) ranged from 1.3 to 6.9%, the ratio of the root mean square error to the standard deviation of the observations (RSR) ranged from 0.22 to 0.27, the Nash-Sutcliffe efficiency (NSE) ranged from 0.93 to 0.95, and the Pearson correlation coefficient (r) ranged from 0.97 to 0.98 for the monthly average daily maximum temperature. And for the monthly average daily minimum temperature, PBIAS was 7.8 to 44.7%, RSR was 0.21 to 0.25, NSE was 0.94 to 0.96, and r was 0.98 to 0.99. The difference by site was not large, and the downscaled results were similar to the observations. In the results of comparing the forecasted reference evapotranspiration calculated using the downscaled data with the observed values for the entire region, PBIAS was 2.2 to 5.4%, RSR was 0.21 to 0.28, NSE was 0.92 to 0.96, and r was 0.96 to 0.98, indicating a very high fit. Due to the characteristics of the statistical models and uncertainty in the downscaling process, the predicted reference evapotranspiration may slightly deviate from the observed value in some periods when temperatures completely different from the past are observed. However, considering that it is a forecast result for the future period, it will be sufficiently useful as information for the evaluation or operation of water resources in the future.

Study on Volume Measurement of Cerebral Infarct using SVD and the Bayesian Algorithm (SVD와 Bayesian 알고리즘을 이용한 뇌경색 부피 측정에 관한 연구)

  • Kim, Do-Hun;Lee, Hyo-Young
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.5
    • /
    • pp.591-602
    • /
    • 2021
  • Acute ischemic stroke(AIS) should be diagnosed within a few hours of onset of cerebral infarction symptoms using diagnostic radiology. In this study, we evaluated the clinical usefulness of SVD and the Bayesian algorithm to measure the volume of cerebral infarction using computed tomography perfusion(CTP) imaging and magnetic resonance diffusion-weighted imaging(MR DWI). We retrospectively included 50 patients (male : female = 33 : 17) who visited the emergency department with symptoms of AIS from September 2017 to September 2020. The cerebral infarct volume measured by SVD and the Bayesian algorithm was analyzed using the Wilcoxon signed rank test and expressed as a median value and an interquartile range of 25 - 75 %. The core volume measured by SVD and the Bayesian algorithm using was CTP imaging was 18.07 (7.76 - 33.98) cc and 47.3 (23.76 - 79.11) cc, respectively, while the penumbra volume was 140.24 (117.8 - 176.89) cc and 105.05 (72.52 - 141.98) cc, respectively. The mismatch ratio was 7.56 % (4.36 - 15.26 %) and 2.08 % (1.68 - 2.77 %) for SVD and the Bayesian algorithm, respectively, and all the measured values had statistically significant differences (p < 0.05). Spearman's correlation analysis showed that the correlation coefficient of the cerebral infarct volume measured by the Bayesian algorithm using CTP imaging and MR DWI was higher than that of the cerebral infarct volume measured by SVD using CTP imaging and MR DWI (r = 0.915 vs. r = 0.763 ; p < 0.01). Furthermore, the results of the Bland Altman plot analysis demonstrated that the slope of the scatter plot of the cerebral infarct volume measured by the Bayesian algorithm using CTP imaging and MR DWI was more steady than that of the cerebral infarct volume measured by SVD using CTP imaging and MR DWI (y = -0.065 vs. y = -0.749), indicating that the Bayesian algorithm was more reliable than SVD. In conclusion, the Bayesian algorithm is more accurate than SVD in measuring cerebral infarct volume. Therefore, it can be useful in clinical utility.

Development of Greenhouse Cooling and Heating Load Calculation Program Based on Mobile (모바일 기반 온실 냉난방 부하 산정 프로그램 개발)

  • Moon, Jong Pil;Bang, Ji Woong;Hwang, Jeongsu;Jang, Jae Kyung;Yun, Sung Wook
    • Journal of Bio-Environment Control
    • /
    • v.30 no.4
    • /
    • pp.419-428
    • /
    • 2021
  • In order to develope a mobile-based greenhouse energy calculation program, firstly, the overall thermal transmittance of 10 types of major covers and 16 types of insulation materials were measured. In addition, to estimate the overall thermal transmittance when the cover and insulation materials were installed in double or triple layers, 24 combinations of double installations and 59 combinations of triple installations were measured using the hotbox. Also, the overall thermal transmittance value for a single material and the thermal resistance value were used to calculate the overall thermal transmittance value at the time of multi-layer installation of covering and insulating materials, and the linear regression equation was derived to correct the error with the measured values. As a result of developing the model for estimating thermal transmittance when installing multiple layers of coverings and insulating materials based on the value of overall thermal transmittance of a single-material, the model evaluation index was 0.90 (good when it is 0.5 or more), indicating that the estimated value was very close to the actual value. In addition, as a result of the on-site test, it was evaluated that the estimated heat saving rate was smaller than the actual value with a relative error of 2%. Based on these results, a mobile-based greenhouse energy calculation program was developed that was implemented as an HTML5 standard web-based mobile web application and was designed to work with various mobile device and PC browsers with N-Screen support. It had functions to provides the overall thermal transmittance(heating load coefficient) for each combination of greenhouse coverings and thermal insulation materials and to evaluate the energy consumption during a specific period of the target greenhouse. It was estimated that an energy-saving greenhouse design would be possible with the optimal selection of coverings and insulation materials according to the region and shape of the greenhouse.

Spatial Downscaling of Ocean Colour-Climate Change Initiative (OC-CCI) Forel-Ule Index Using GOCI Satellite Image and Machine Learning Technique (GOCI 위성영상과 기계학습 기법을 이용한 Ocean Colour-Climate Change Initiative (OC-CCI) Forel-Ule Index의 공간 상세화)

  • Sung, Taejun;Kim, Young Jun;Choi, Hyunyoung;Im, Jungho
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_1
    • /
    • pp.959-974
    • /
    • 2021
  • Forel-Ule Index (FUI) is an index which classifies the colors of inland and seawater exist in nature into 21 gradesranging from indigo blue to cola brown. FUI has been analyzed in connection with the eutrophication, water quality, and light characteristics of water systems in many studies, and the possibility as a new water quality index which simultaneously contains optical information of water quality parameters has been suggested. In thisstudy, Ocean Colour-Climate Change Initiative (OC-CCI) based 4 km FUI was spatially downscaled to the resolution of 500 m using the Geostationary Ocean Color Imager (GOCI) data and Random Forest (RF) machine learning. Then, the RF-derived FUI was examined in terms of its correlation with various water quality parameters measured in coastal areas and its spatial distribution and seasonal characteristics. The results showed that the RF-derived FUI resulted in higher accuracy (Coefficient of Determination (R2)=0.81, Root Mean Square Error (RMSE)=0.7784) than GOCI-derived FUI estimated by Pitarch's OC-CCI FUI algorithm (R2=0.72, RMSE=0.9708). RF-derived FUI showed a high correlation with five water quality parameters including Total Nitrogen, Total Phosphorus, Chlorophyll-a, Total Suspended Solids, Transparency with the correlation coefficients of 0.87, 0.88, 0.97, 0.65, and -0.98, respectively. The temporal pattern of the RF-derived FUI well reflected the physical relationship with various water quality parameters with a strong seasonality. The research findingssuggested the potential of the high resolution FUI in coastal water quality management in the Korean Peninsula.