• Title/Summary/Keyword: Coding

Search Result 7,295, Processing Time 0.029 seconds

Performance Analysis of Scalable HEVC Coding Tools (HEVC 기반 스케일러블 비디오 부호화 툴의 성능 분석)

  • Kim, Yongtae;Choi, Jinhyuk;Choi, Haechul
    • Journal of Broadcast Engineering
    • /
    • v.20 no.4
    • /
    • pp.497-508
    • /
    • 2015
  • Current communication networks consist of channels with various throughputs, protocols, and packet loss rates. Moreover, there are also diverse user multimedia consumption devices having different capabilities and screen sizes. Thus, a practical necessity of scalability on video coding have been gradually increasing. Recently, The Scalable High Efficiency Video Coding(SHVC) standard is developed by Joint Collaborative Team on Video Coding(JCT-VC) organized in cooperation with MPEG of ISO/IEC and VCEG of ITU-T. This paper introduces coding tools of SHVC including adopted and unadopted tools discussed in the process of the SHVC standardization. Furthermore, the individual tool and combined tool set are evaluated in terms of coding efficiency relative to a single layer coding structure. This analysis would be useful for developing a fast SHVC encoder as well as researching on a new scalable coding tool.

Lossless Coding of Audio Spectral Coefficients Using Selective Bit-Plane Coding (선택적 비트 플레인 부호화를 이용한 오디오 주파수 계수의 무손실 부호화 기술)

  • Yoo, Seung-Kwan;Park, Ho-Chong;Oh, Seoung-Jun;Ahn, Chang-Beom;Sim, Dong-Gyu;Beak, Seung-Kwon;Kang, Kyoung-Ok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.27 no.1
    • /
    • pp.18-25
    • /
    • 2008
  • In this paper, new lossless coding method of spectral coefficients for audio codec is proposed. Conventional lossless coder uses Huffman coding utilizing the statistical characteristics of spectral coefficients, but does not provide the high coding efficiency due to its simple structure. To solve this limitation, new lossless coding scheme with better performance is proposed that consists of bit-plane transform and run-length coding. In the proposed scheme, the spectral coefficients are first transformed by bit-plane into 1-D bit-stream with better correlative properties, which is then coded intorun-length and is finally Huffman coded. In addition, the coding performance is further increased by applying the proposed bit-plane coding selectively to each group, after the entire frequency is divided into 3 groups. The performance of proposed coding scheme is measured in terms of theoretical number of bits based on the entropy, and shows at most 6% enhancement compared to that of conventional lossless coder used in AAC audio codec.

Improved FGS Coding System Based on Sign-bit Reduction in Embedded Bit-plane Coding

  • Seo, Kwang-Deok;Davies, Robert J.
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.2 no.3
    • /
    • pp.129-137
    • /
    • 2007
  • MPEG-4 FGS is one of scalable video coding schemes specified In ISO/IEC 14496-2 Amendment 2, and particularly standardized as a scheme for providing fine granular quality and temporal scalabilities. In this paper, we propose a sign-bit reduction technique in embedded bit-plane coding to enhance the coding efficiency of MPEG-4 FGS system. The general structure of the FGS system for the proposed scheme is based on the standard MPEG-4 FGS system. The proposed FGS enhancement-layer encoder takes as input the difference between the original DCT coefficient and the decision level of the quantizer instead of the difference between the original DCT coefficient and its reconstruction level. By this approach, the sign information of the enhancement-layer DCT coefficients can be the same as that of the base-layer ones at the same frequency index in DCT domain. Thus, overhead bits required for coding a lot of sign information of the enhancement-layer DCT coefficients in embedded bit-plane coding can be removed from the generated bitstream. It is shown by simulations that the proposed FGS coding system provides better coding performance, compared to the MPEG-4 FGS system in terms of compression efficiency.

  • PDF

Optimizing the Joint Source/Network Coding for Video Streaming over Multi-hop Wireless Networks

  • Cui, Huali;Qian, Depei;Zhang, Xingjun;You, Ilsun;Dong, Xiaoshe
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.4
    • /
    • pp.800-818
    • /
    • 2013
  • Supporting video streaming over multi-hop wireless networks is particularly challenging due to the time-varying and error-prone characteristics of the wireless channel. In this paper, we propose a joint optimization scheme for video streaming over multi-hop wireless networks. Our coding scheme, called Joint Source/Network Coding (JSNC), combines source coding and network coding to maximize the video quality under the limited wireless resources and coding constraints. JSNC segments the streaming data into generations at the source node and exploits the intra-session coding on both the source and the intermediate nodes. The size of the generation and the level of redundancy influence the streaming performance significantly and need to be determined carefully. We formulate the problem as an optimization problem with the objective of minimizing the end-to-end distortion by jointly considering the generation size and the coding redundancy. The simulation results demonstrate that, with the appropriate generation size and coding redundancy, the JSNC scheme can achieve an optimal performance for video streaming over multi-hop wireless networks.

Network Coding Performance Analysis with Multicast Topology (Multicast Topology에서의 네트워크 코딩 성능 분석)

  • Lee, Mi-Sung;Balakannan, S.P.;Lee, Moon-Ho
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.11
    • /
    • pp.30-35
    • /
    • 2010
  • Network coding is a new research area that may have interesting applications in practical networking systems. With network coding, intermediate nodes may send out packets that are linear combinations of previously received information. The exploration of numerical, theoretical and operational networking issues from new perspectives that consider coding at network nodes. We have presented a network coding approach which asymptotically achieves optimal capacity in multi-source multicast networks. Our analysis uses connections that we make between network coding. In this paper we analysed with and without network coding performance. Also we discussed the simulation results on network coding with linear optimization problem and it shows how network coding can be used.

A New Motion Vector Coding Scheme for Improving Video Coding Efficiency (동영상 부호화 성능 개선을 위한 새로운 움직임 벡터 부호화 기법)

  • Ki, Dae-Wook;Kim, Hyun-Tae;Moon, Yong-Ho
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.5
    • /
    • pp.659-664
    • /
    • 2013
  • It is necessary to develop an efficient MVD coding scheme to improve the video coding performance. In this paper, combined codeword and joint codeword are suggested from analyses on statistical distributions of MVD according to the quantization steps and the conventional codeword structure. Based on these codewords, we propose new MVD coding scheme where one of the suggested codewords is employed to encode the MVD according to the coding environment. Simulation results show that the proposed scheme enhances the coding performance without the quality degradation.

DNA coding-Based Fuzzy System Modeling for Chaotic Systems (DNA 코딩 기반 카오스 시스템의 퍼지 모델링)

  • Kim, Jang-Hyun;Joo, Young-Hoon;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 1999.11c
    • /
    • pp.524-526
    • /
    • 1999
  • In the construction of successful fuzzy models and/or controllers for nonlinear systems, the identification of a good fuzzy inference system is an important yet difficult problem, which is traditionally accomplished by a time-consuming trial-and-error process. In this paper, we propose a systematic identification procedure for complex multi-input single-output nonlinear systems with DNA coding method. A DNA coding method is optimization algorithm based on biological DNA as conventional genetic algorithms(GAs) are. The strings in the DNA coding method are variable-length strings, while standard GAs work with a fixed-length coding scheme. the DNA coding method is well suited to learning because it allows a flexible representation of a fuzzy inference system. We also propose a new coding method fur applying the DNA coding method to the identification of fuzzy models. This coding scheme can effectively represent the zero-order Takagi-Sugeno(TS) fuzzy model. To acquire optimal TS fuzzy model with higher accuracy and economical size, we use the DNA coding method to optimize the parameters and the number of fuzzy inference system. In order to demonstrate the superiority and efficiency of the proposed scheme, we finally show its application to a Duffing-forced oscillation system.

  • PDF

Improved CABAC Method for Lossless Image Compression (무손실 영상 압축을 위한 향상된 CABAC 방법)

  • Heo, Jin;Ho, Yo-Sung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.6C
    • /
    • pp.355-360
    • /
    • 2011
  • In this paper, we propose a new context-based adaptive binary arithmetic coding (CABAC) method for lossless image compression. Since the conventional CABAC in H.264/AVC was originally designed for lossy coding, it does not yield adequate performance during lossless coding. Therefore, we proposed an improved CABAC method for lossless intra coding by considering the statistical characteristics of residual data in lossless intra coding. Experimental results showed that the proposed method reduced the bit rate by 18.2%, compared to the conventional CABAC for lossless intra coding.

The channel coding algorithm for the ATM cell QoS improvement in statellite B-ISDN/ATM network (위성 B-ISDN/ATM 망에서 ATM 셀 전송성능 개선을 위한 채널코딩 알고리즘)

  • 김신재;김병균;최형진
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.5
    • /
    • pp.1083-1096
    • /
    • 1997
  • To implement satellite B-ISDN/ATM network, it needs to gurantee reliable transport via satelite in the poor BER environment. So, it requires to use channel coding (FEC:Forward Error Correction) schemes for improvement of BER performance, but these coding effects evoke burst errors and degradation of the QoS. Therefore we have to investigate new algorithm that compensates these weaknesses. We consider convolutional coding and concatenated coding among FEC schemes as FEC for satellite transmission and choose different compensational algorithm by the error characteristics of the using type of FEC. In using concatenated coding, this paper proposes the satellite system structure for interconnection to the terrestrial network and proposes the channel coding algorithm for improvement of transmission performances. We execute performance evaluation of the proposed algorithm by computer simulation. In detail, we propose 4 types of application ATM cell to the block coding(Reed-Solomon) and propose the new 55 byte ATM cell that enforces the error correction capability of cell header by the BCH coding. Then we propose the outer interleaverand the cell unit interleaver that evoke maximum coding effect of BCH code.

  • PDF

Comparison of Parallelized Network Coding Performance (네트워크 코딩의 병렬처리 성능비교)

  • Choi, Seong-Min;Park, Joon-Sang;Ahn, Sang-Hyun
    • The KIPS Transactions:PartC
    • /
    • v.19C no.4
    • /
    • pp.247-252
    • /
    • 2012
  • Network coding has been shown to improve various performance metrics in network systems. However, if network coding is implemented as software a huge time delay may be incurred at encoding/decoding stage so it is imperative for network coding to be parallelized to reduce time delay when encoding/decoding. In this paper, we compare the performance of parallelized decoders for random linear network coding (RLC) and pipeline network coding (PNC), a recent development in order to alleviate problems of RLC. We also compare multi-threaded algorithms on multi-core CPUs and massively parallelized algorithms on GPGPU for PNC/RLC.