• Title/Summary/Keyword: Code performance

Search Result 4,240, Processing Time 0.03 seconds

Block Error Performance improvement of the DS/CDMA BPSK system with MRC Diversity and Channel coding Techniques in Nakagami Fading Channel. (Nakagami 페이딩 채널에서 MRC 다이버시티와 채널 부호화 기법을 사용한 DS/CDMA BPSK 시스템의 블록 오율 성능 개선)

  • 강희조;노재성;조성준
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.3A
    • /
    • pp.391-398
    • /
    • 2000
  • In this paper, MRC(Maximum Ratio Combine) diversity, (23, 12) Golay code, (7, 5) Reed-Solomon code, and (3, 1) majority selection code are employed to improve the performance of DS/CDMA BRSK in Nakagami fading channel. and MRC diversity combined with other coding techniques is suggested, with which, the performance of DS/CDMA BRSK is compared and analyzed. Also, system required Eb/N0 to meet BER=10-5 for multi user data communication is obtained according to each techniques. From the results, when each techniques is employed to DS/CDMA BRSK system. coding employed system shows better performance than diversity employed system. Especially, Golay code shows better performance than oter codes. also MRC diversity is employed, the number of multiple access user to meet data communication requirement of BER=10-5 can accomodate up to 8 users. and when each code is employed, Golay code, majority selection code, and Reed-Solomon code shows the capacity of 14, 12, and 10 user respectively. But MRC diversity combined with coding techniques can reduce restriction of multiple access user. However, it is desirable these combined technique are employed according to service types and requirements provided.

  • PDF

Validation of the fuel rod performance analysis code FRIPAC

  • Deng, Yong-Jun;Wei, Jun;Wang, Yang;Zhang, Bin
    • Nuclear Engineering and Technology
    • /
    • v.51 no.6
    • /
    • pp.1596-1609
    • /
    • 2019
  • The fuel rod performance has great importance for the safety and economy of an operating reactor. The fuel rod performance analysis code, which considers the thermal-mechanical response and irradiation effects of fuel rod, is usually developed in order to predict fuel rod performance accurately. The FRIPAC (${\underline{F}}uel$ ${\underline{R}}od$ ${\underline{I}}ntegral$ ${\underline{P}}erformance$ ${\underline{A}}nalysis$ ${\underline{C}}ode$) is such a fuel rod performance analysis code that has been developed recently by China Nuclear Power Technology Research Institute Co. Ltd. The code aims at the computational simulation of the Pressurized Water Reactor fuel rod behavior for both steady-state and power ramp condition. A brief overview of FRIPAC is presented including the computational framework and the main behavioral models. Validation of the code is also presented and it focuses on the fuel rod behavior including fuel center temperature, fission gas release, rod internal pressure/internal void volume, cladding outer diameter and cladding corrosion thickness. The validation is based on experimental data from several international projects. The validation results indicate that FRIPAC is an accurate and reliable fuel rod performance analysis code because of the satisfactory comparison results between the experimental measurements and the code predictions.

A study of the stack allocation policy on JIT Code Generator (JIT Code Generator 상의 스택할당 정책 적용에 관한 연구)

  • 김효남
    • Journal of the Korea Society of Computer and Information
    • /
    • v.6 no.4
    • /
    • pp.100-103
    • /
    • 2001
  • The best solution to improve the execution speed of Java program is to make use of the high speed JVM(Java Virtual Machine). The performance of JVM depends on the difference of its implementation. One of the technologies to enhance JVM performance is a JIT(Just-in-Time) code generator. The JIT code generator transforms Java byte code to the native machine code in accordance with computer system platform. The native machine code is faster than the existing interpreter method, since it can reduce the time to analyze the Java byte code. But the JIT code generator have the problem of increasing the traffic between stack and register because of using many register. Therefore, this paper suggests how to reduce the traffic by applying the policy of stack allocation to JIT code generation, as one of the methods to enhance the performance of JVM.

  • PDF

A Study of LLVM-based Embedded System Performance Analyzer (LLVM 기반의 임베디드 시스템 성능 분석기의 연구)

  • Cho, Doosan
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.1
    • /
    • pp.577-582
    • /
    • 2022
  • For developing a new embedded system, an application program/an emulator and a compiler are developed simultaneously. In order to provide the optimal performance of all system components, local optimization should be carried out for the developing process. For this purpose, if a source-level performance analyzer is developed, it is possible to optimize the application program's source code by the performance evaluation. In general, the performance of an application program is determined in the loop iterations. The Intermediate Representation (IR) code generator generates IR code from the source code, and evaluates the execution time with the instructions in the intermediate representation code. If the source code is improved based on the evaluated result, better results can be obtained in the final application code. This study describes the source-level performance analyzer that can be used during the simultaneous development of the new embedded system and its application programs. The performance analyzer makes it possible to more quickly optimize the performance of the new embedded system.

The performance analysis of a novel enhanced turbo coded system with increased time diversity effect (시간 다이버시티 효과를 증대시키는 새로운 ETD-터보 코드 적용시스템의 성능분석)

  • 고연화;하덕호
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.4 no.4
    • /
    • pp.73-80
    • /
    • 2003
  • In this paper, we propose a ETD-turbo code(Enhanced Time Diversity turbo code) which is a novel turbo code configuration to increase the time diversity effect and analyze the performance of ETD-turbo coded MC-CDMA system. The ETD-turbo code, which is added another interleaver to the conventional turbo code structure, is consisted. Time diversity effect of the ETD-turbo code is improved by every parity bits converted into interleaver pattern. In order to the performance of the ETD-turbo code, we conduct a computer simulation about interleaver type. And we make comparison between the performance of ETD-turbo coded MC-CDMA system and the conventional turbo coded MC-CDMA system. By the simulation results, ETD-turbo code has less BER than the conventional turbo code and time delay is decreased by reducing iteration numbers. Therefore, it is defined that the performance of ETD-turbo coded MC-CDMA system is improved than the conventional turbo coded MC-CDMA system.

  • PDF

Analysis Third-dimension Turbo Code for DVB-RCS Next Generation (DVB-RCS Next Generation을 위한 Third-dimension Turbo Code 분석)

  • Park, Tae-Doo;Kim, Min-Hyuk;Jung, Ji-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.2
    • /
    • pp.279-285
    • /
    • 2011
  • The next generation wireless communication systems are required high BER performance better than present performance. Double binary Turbo code have error floor at high SNR, so it cannot be used in next generation wireless communication system. Therefore, many methods are proposed for overcome error floor at DVB-RCS NG(next generation). In this paper, we analysis structure of third-dimension Turbo code(3D-turbo code). 3D-Turbo code overcomes error flow by additive post-encoder in conventional DVB-RCS Turbo code. Performance of 3D-Turbo code is changed by post-encoder form, interleaving method, value of ${\lambda}$. So we are simulated by those parameter and proposed optimal form. By a result, performance of 3D-Turbo is better than conventional DVB-RCS Turbo code and it overcome error floor of conventional DVB-RCS Turbo code.

Performance Analysis of Coded FH/SSMA Communication Network system (부호화한 주파수 도약 대역 확산 통신 네트워크의 성능 분석)

  • 김근묵;정영지;홍은기;황금찬
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.17 no.7
    • /
    • pp.730-738
    • /
    • 1992
  • This paper alms to analyse the performance of frequency hopping /spread spectrum multiple access system by employing the channel with mixture of AWGN, partial band Jamming, fading and user interference. The performance analysis of FH /SSMA system, taking account of frequency 'hit'(user Interference ) which occurs in the presence of multiple user, produces the following numerical results by computing error probability and throughput of each code in two cases whether the side Information about channel is used or not. The numerical results are as follows : When composite interferences coexist In channel, RS code Is significantly superior to convolutional code in terms of performance. Concatenated code provides the same performance as RS code. The above results show that RS code is pertinent as error-correction code.

  • PDF

Performance of PN Code Tracking Loop for a DS/CDMA System with Imperfect Power Control and Shadowing

  • Kim, Jin-Young
    • Proceedings of the IEEK Conference
    • /
    • 2000.07a
    • /
    • pp.501-504
    • /
    • 2000
  • In this paper, performance of a pseudonoise (PN) code tracking loop is analyzed and simulated for a direct-sequence/code-division multiple access ( DS/CDMA) system with imperfect power control in a multipath fading channel. A noncoherent first-order delay-locked loop (DLL) is considered as a PN code tracking loop. Power control error is modeled as a log-normally distributed random variable. From the simulation results, it is shown that for smaller discriminator offset, tracking jitter performance is improved while MTLL performance is degraded. It is shown that large power control error and heavy shadowing substantially degrade the PN tracking performance. The analysis in this paper can be applicable to design of PN code tracking loop for a DS/CDMA system.

  • PDF

Encoding of a run-length soruce using recursive indexing (줄길이 신호원의 순환지수 부호화)

  • 서재준;나상신
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.33A no.7
    • /
    • pp.23-33
    • /
    • 1996
  • This paper deals with the design of a recursively-indexed binary code for facsimile soruces and its performance. Sources used here are run-lengths of white pixels form higher-resolution facsimile. The modified huffman code used for G.3 facsimile is chosen for the performance comparison. Experiments confirm the fact that recursive indexing preserves the entropy of a memoryless geometric source: the entropy of recursively-indexed physical surce iwth roughly geometric distributin remains within 2% of the empirical source entropy. The designed recursively-indexed binary codes consist of a code applied to text-type documents and to graphics - type documents is compared iwth that of the modified huffman code. Numerical resutls show that the modified huffman code performs well for text-type documents and not equally well for graphics-tyep documents. On the other hand, recursively-indexed binary codes have shown a better performance for graphics-type documents whose distribution are similar to a geometric distribution. Specifically, the code rates of recursively-indexed binary codes with 60 codewords are from 8% to 20% of the empirical source entropy smaller than that of th emodified huffman code with 91 codewords.

  • PDF

Polar Code Design for Nakagami-m Channel

  • Guo, Rui;Wu, Yingjie
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.7
    • /
    • pp.3156-3167
    • /
    • 2020
  • One drawback of polar codes is that they are not universal, that is, to achieve optimal performance, different polar codes are required for different kinds of channel. This paper proposes a polar code construction scheme for Nakagami-m fading channel. The scheme fully considers the characteristics of Nakagami-m fading channel, and uses the optimized Bhattacharyya parameter bounds. The constructed code is applied to an orthogonal frequency division multiplexing (OFDM) system over Nakagami-m fading channel to prove the performance of polar code. Simulation result shows the proposed codes can get excellent bit error rate (BER) performance with successive cancellation list (SCL) decoding. For example, the designed polar code with cyclic redundancy check (CRC) aided SCL (L = 8) decoding achieves 1.1dB of gain over LDPC at average BER about 10-5 under 4-quadrature amplitude modulation (4QAM) while the code length is 1024, rate is 0.5.