• Title/Summary/Keyword: Code for Energy Efficiency Design

Search Result 66, Processing Time 0.026 seconds

Sustainability Criteria Identified in the Global Sourcing Practices of Global Fashion Retailers (글로벌 패션 기업의 해외 소싱 프로세스에서 나타난 지속 가능성 기준)

  • Lee, Ji Yeon
    • Fashion & Textile Research Journal
    • /
    • v.24 no.2
    • /
    • pp.206-216
    • /
    • 2022
  • This study sought to examine the sustainability criteria found in the global sourcing practices of global fashion retailers. Sustainable supply chain management, with a particular focus on the sustainability criteria of global sourcing, was analyzed. This qualitative study was based on a focus group interview and corporate social responsibility (CSR) annual reports. Eight master categories, 18 middle categories, and 37 bottom categories were extracted. The key categories and their middle categories were as follows: (1) Social compliance (working conditions, employment, safety); (2) Environment concerns (environmental pollution management, eco-friendly production, supply chain environment); (3) Energy efficiency (energy saving program, store environment); (4) Consumer protection (restricted substances management, consumer product safety improvement); (5) Management system (code of conduct, triangle audit system); (6) Community social activities (local community service, voluntary activities, charitable activities); (7) External stakeholder engagement (media & non-governmental organization management, maintenance of relationship with local authority); (8) Brand protection (respect for companies' intellectual property). The findings of this study offer academically significant insights into the sustainability criteria that can be encountered by companies under diverse global sourcing scenarios, revealing that global sourcing by fashion retailers is not merely a means of reducing costs, but a way of generating new jobs and making a social contribution to developing countries. The study's findings also have practical significance, offering guidelines for general CSR activities in the global sourcing process.

Analysis Program for Offshore Wind Energy Substructures Embedded in AutoCAD (오토캐드 환경에서 구현한 해상풍력 지지구조 해석 프로그램)

  • James Ban;Chuan Ma;Sorrasak Vachirapanyakun;Pasin Plodpradit;Goangseup Zi
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.4
    • /
    • pp.33-44
    • /
    • 2023
  • Wind power is one of the most efficient and reliable energy sources in the transition to a low-carbon society. In particular, offshore wind power provides a high-quality and stable wind resource compared to onshore wind power while both present a higher installed capacity than other renewables. In this paper, we present our new program, the X-WIND program well suitable for the assessment of the substructure of offshore wind turbines. We have developed this program to increase the usability of analysis programs for offshore wind energy substructures by addressing the shortcomings of existing programs. Unlike the existing programs which cannot solely perform the substructure analyses or lack pre-post processors, our X-WIND program can complete the assessment analysis for the offshore wind turbines alone. The X-WIND program is embedded in AutoCAD so that both design and analysis are performed on a single platform. This also performs static and dynamic analysis for wind, wave, and current loads, essential for offshore wind power structures, and includes pre/post processors for designs, mesh developments, graph plotting, and code checking. With this expertise, our program enhances the usability of analysis programs for offshore wind energy substructures, promoting convenience and efficiency.

Optical Monte Carlo Simulation on Spatial Resolution of Phosphor Coupled X-ray Imaging Detector (형광체 결합형 X선 영상검출기의 공간 해상력 몬테카를로 시뮬레이션)

  • Kang, Sang-Sik;Kim, So-Yeong;Shin, Jung-Wook;Heo, Sung-Wook;Kim, Jae-Hyung;Nam, Sang-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.328-328
    • /
    • 2007
  • Large area matrix-addressed image detectors are a recent technology for x-ray imaging with medical diagnostic and other applications. The imaging properties of x-ray pixel detectors depend on the quantum efficiency of x-rays, the generated signal of each x-ray photon and the distribution of the generated signal between pixels. In a phosphor coated detector the light signal is generated by electrons captured in the phosphor screen. In our study we simulated the lateral spread distributions for phosphor coupled detector by Monte Carlo simulations. Most simulations of such detectors simplify the setup by only taking the conversion layer into account neglecting behind. The Monte Carlo code MCNPX has been used to simulate the complete interaction and subsequent charge transport of x-ray radiation. This has allowed the analysis of charge sharing between pixel elements as an important limited factor of digital x-ray imaging system. The parameters are determined by lateral distribution of x-ray photons and x-ray induced electrons. The primary purpose of this study was to develop a design tool for the evaluation of geometry factor in the phosphor coupled optical imaging detector. In order to evaluate the spatial resolution for different phosphor material, phosphor geometry we have developed a simulation code. The developed code calculates the energy absorption and spatial distribution based on both the signal from the scintillating layer and the signal from direct detection of x-ray in the detector. We show that internal scattering contributes to the so-called spatial resolution drop of the image detector. Results from the simulation of spatial distribution in a phosphor pixel detector are presented. The spatial resolution can be increased by optimizing pixel size and phosphor thickness.

  • PDF

Heat transfer analysis in sub-channels of rod bundle geometry with supercritical water

  • Shitsi, Edward;Debrah, Seth Kofi;Chabi, Silas;Arthur, Emmanuel Maurice;Baidoo, Isaac Kwasi
    • Nuclear Engineering and Technology
    • /
    • v.54 no.3
    • /
    • pp.842-848
    • /
    • 2022
  • Parametric studies of heat transfer and fluid flow are very important research of interest because the design and operation of fluid flow and heat transfer systems are guided by these parametric studies. The safety of the system operation and system optimization can be determined by decreasing or increasing particular fluid flow and heat transfer parameter while keeping other parameters constant. The parameters that can be varied in order to determine safe and optimized system include system pressure, mass flow rate, heat flux and coolant inlet temperature among other parameters. The fluid flow and heat transfer systems can also be enhanced by the presence of or without the presence of particular effects including gravity effect among others. The advanced Generation IV reactors to be deployed for large electricity production, have proven to be more thermally efficient (approximately 45% thermal efficiency) than the current light water reactors with a thermal efficiency of approximately 33 ℃. SCWR is one of the Generation IV reactors intended for electricity generation. High Performance Light Water Reactor (HPLWR) is a SCWR type which is under consideration in this study. One-eighth of a proposed fuel assembly design for HPLWR consisting of 7 fuel/rod bundles with 9 coolant sub-channels was the geometry considered in this study to examine the effects of system pressure and mass flow rate on wall and fluid temperatures. Gravity effect on wall and fluid temperatures were also examined on this one-eighth fuel assembly geometry. Computational Fluid Dynamics (CFD) code, STAR-CCM+, was used to obtain the results of the numerical simulations. Based on the parametric analysis carried out, sub-channel 4 performed better in terms of heat transfer because temperatures predicted in sub-channel 9 (corner subchannel) were higher than the ones obtained in sub-channel 4 (central sub-channel). The influence of system mass flow rate, pressure and gravity seem similar in both sub-channels 4 and 9 with temperature distributions higher in sub-channel 9 than in sub-channel 4. In most of the cases considered, temperature distributions (for both fluid and wall) obtained at 25 MPa are higher than those obtained at 23 MPa, temperature distributions obtained at 601.2 kg/h are higher than those obtained at 561.2 kg/h, and temperature distributions obtained without gravity effect are higher than those obtained with gravity effect. The results show that effects of system pressure, mass flowrate and gravity on fluid flow and heat transfer are significant and therefore parametric studies need to be performed to determine safe and optimum operating conditions of fluid flow and heat transfer systems.

Study on the properties of temperature distribution at the split-disk geometry glass laser amplifier (분할디스크형 글라스레이저 증폭기의 온도분포특성에 관한 연구)

  • 김병태
    • Korean Journal of Optics and Photonics
    • /
    • v.3 no.4
    • /
    • pp.227-233
    • /
    • 1992
  • The simulation code was developed for the development of the split-disk geometry glass amplifier, which could design the laser apparatus and analyze the properties of the laser system. The flashlamp emission energy at the short wavelength region must be reduced, while maintaining a current density between 2000 and 4000 A/$\textrm{cm}^{2}$, in order to reduce the thermal loading in the laser glass and to raise the coupling efficiency between the emission spectrum of the flashlamps and the absorption spectrum of the laser glass. By cutting the laser glass into three equal pieces, the temperature rise in the laser glass dropped by 70% due to the efficient removal of the heat in the laser glass. It was found that the $Nd^{3+}$ doping rate of each laser glass should be properly selected and the optimum value of the product of the absorption coefficient $\alpha$ and the thickness d of the laser glass is about 0.26 in the split-disk geometry.

  • PDF

Study on Optimization of Detection System of Prompt Gamma Distribution for Proton Dose Verification (양성자 선량 분포 검증을 위한 즉발감마선 분포측정 장치 최적화 연구)

  • Lee, Han Rim;Min, Chul Hee;Park, Jong Hoon;Kim, Seong Hoon;Kim, Chan Hyeong
    • Progress in Medical Physics
    • /
    • v.23 no.3
    • /
    • pp.162-168
    • /
    • 2012
  • In proton therapy, in vivo dose verification is one of the most important parts to fully utilize characteristics of proton dose distribution concentrating high dose with steep gradient and guarantee the patient safety. Currently, in order to image the proton dose distribution, a prompt gamma distribution detection system, which consists of an array of multiple CsI(Tl) scintillation detectors in the vertical direction, a collimator, and a multi-channel DAQ system is under development. In the present study, the optimal design of prompt gamma distribution detection system was studied by Monte Carlo simulations using the MCNPX code. For effective measurement of high-energy prompt gammas with enough imaging resolution, the dimensions of the CsI(Tl) scintillator was determined to be $6{\times}6{\times}50mm^3$. In order to maximize the detection efficiency for prompt gammas while minimizing the contribution of background gammas generated by neutron captures, the hole size and the length of the collimator were optimized as $6{\times}6mm^2$ and 150 mm, respectively. Finally, the performance of the detection system optimized in the present study was predicted by Monte Carlo simulations for a 150 MeV proton beam. Our result shows that the detection system in the optimal dimensions can effectively measure the 2D prompt gamma distribution and determine the beam range within 1 mm errors for 150 MeV proton beam.