• Title/Summary/Keyword: Code Separation Program

Search Result 11, Processing Time 0.021 seconds

Wind turbine blade design using PROPID code and comparative analysis of aerodynamic properties based on CFD (PROPID 코드 활용 풍력발전기 블레이드 설계 및 CFD 기반 공력특성 비교분석)

  • Seo Yoon Choi;Jun Hee Jeong;Rae Hyung Yuck;Kwang Tae Ha;Jae Ho Jeong
    • Journal of Wind Energy
    • /
    • v.13 no.3
    • /
    • pp.5-12
    • /
    • 2022
  • A methodology of wind turbine blade design has been established with PROPID code, which is an aerodynamic blade design tool developed by UIUC. PROPID code can design and analyze a wind turbine blade in a steady state flow. The methodology of wind turbine blade design includes an initial blade concept design, airfoil selection, basic design, and detailed design steps. Inverse design and performance analysis of the 2.3 MW U113 wind turbine blade was performed to verify the wind turbine blade design methodology. The differences in calculated power between PROPID code and GH Bladed code are under 1.0% in all wind conditions. Both blade shape design and performance analysis results using PROPID code are accurate. The aerodynamic characteristics of a U113 blade were investigated by computational fluid dynamics. Separation flow was captured by a Reynolds-averaged Navier-Stokes steady flow simulation using ANSYS CFX code. The numerical aerodynamic analysis methodology was verified by comparing the analysis results through CFD with BEMT-based program GH Bladed code results. Therefore, the blade design methodology will be applied to develop a super-capacity 20 MW wind turbine blade in the future.

Evaluation of Polishing Performance Using The Improved Polishing Robot System Attached to Machining Center (머시닝센터 장착형 연마로봇의 성능 향상 및 연마 성능 평가)

  • Lee, Min-Cheol;Cho, Young-Gil;Lee, Man-Hyoung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.9
    • /
    • pp.179-190
    • /
    • 1999
  • To automate the polishing process, a polishing robot with two axes which is attached to a machining center with three axes has been developed by our previous research. This automatic polishing robot is able to keep the polishing tool normal to the curved surface of die and is able to maintain a constant pneumatic pressure. Therefore, in the case of a curved surface die, the surface roughness to be polished by the system with five axes is improved superior than the surface by a three-axis machining center. However, because the polishing robot was big and heavy, a polishing workspace was limited and then it was difficult to attach the robot to machining center. In this study, the smaller and lighter polishing robot than the previous has been designed to improve defects due to the magnitude and weight of the robot. And the sliding mode control ins applied to polishing robot to improve the tracking performance. To obtain switching parameters of sliding mode control, the signal compression method is used. Code separation program to separate the date for a three-axis machining center and a two-axis polishing robot from a five-axis NC data is improved for users to check conveniently the separated trajectory and to handle many data by using the graphic user interface. To evaluate the polishing performance of the developed robot, the polishing experiment for shadow mask was carried out. The result shows the automatic polishing robot has a good trajectory tracking performance and obtains a good polished workpiece efficiently under recommended polishing conditions.

  • PDF

Numerical optimization design by computational fluid dynamics (전산유체역학을 이용한 수치 최적설계)

  • Lee, Jeong-U;Mun, Yeong-Jun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.7
    • /
    • pp.2347-2355
    • /
    • 1996
  • Purpose of the present study is to develop a computational design program for shape optimization, combining the numerical optimization technique with the flow analysis code. The present methodology is then validated in three cases of aerodynamic shape optimization. In the numerical optimization, a feasible direction optimization algorithm and shape functions are considered. In the flow analysis, the Navier-Stokes equations are discretized by a cell-centered finite volume method, and Roe's flux difference splitting TVD scheme and ADI method are used. The developed design code is applied to a transonic channel flow over a bump, and an external flow over a NACA0012 airfoil to minimize the wave drag induced by shock waves. Also a separated subsonic flow over a NACA0024 airfoil is considered to determine a maximum allowable thickness of the airfoil without separation.

Development of Automatic Polishing Robot System and Integrated Operating Program (자동 연마 로봇 시스템의 개발 및 통합 구동 환경 구축)

  • 이민철;정진영;고석조;허창훈
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.1
    • /
    • pp.107-117
    • /
    • 2003
  • Polishing a die that has free-form surfaces is a time-consuming and tedious job, and requires a considerable amount of high-precision skill. In order to reduce the polishing time and cope with the shortage of skilled workers, an automatic polishing robot system was developed. The polishing robot system is composed of two subsystems, a three-axis machining center and a two-axis polishing head. The machining center is controlled by a FANUC controller, and the polishing head by DSP controller. The system has five degrees of freedom and is able to keep the polishing tool normal to the die surface during operation. To easily operate the developed polishing robot system, this study developed an integrated operating program in the Windows environment. The program consists of five modules: a polishing data generation module, a code separation module, a polishing module, a graphic simulator module, and a teaching module. And, the automatic teaching system was developed to easily obtain teaching data and it consists of a three dimensional joystick and a proximity sensor. Also, to evaluate the performance of the integrated operating program and the polishing robot system, polishing experiments of a die of shadow mask were carried out.

User-friendly Automatic Polishing Robot System and Its Integrated Operating Program

  • Lee, Min-Cheol;Jung, Jin-Young;Go, Seok-Jo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.5 no.3
    • /
    • pp.69-76
    • /
    • 2004
  • Polishing a die that has free-form surfaces is a time-consuming and tedious job, and requires a considerable amount of high-precision skill. In order to reduce the polishing time and cope with the shortage of skilled workers, an automatic polishing robot system was developed. The polishing robot system is composed of two subsystems, a three-axis machining center and a two-axis polishing head. The machining center is controlled by a FANUC controller, and the polishing head by DSP controller. The system has five degrees of freedom and is able to keep the polishing tool normal to the die surface during operation. To easily operate the developed polishing robot system, this study developed an integrated operating program in the Windows environment. The program consists of five modules: a polishing data generation module, a code separation module, a polishing module, a graphic simulator module, and a teaching module. Also, the automatic teaching system was developed to easily obtain teaching data and it consists of a three dimensional joystick and a proximity sensor. Also, to evaluate the performance of the integrated operating program and the polishing robot system, polishing experiments of a die of shadow mask were carried out.

Network separation construction method using network virtualization (네트워크 가상화를 이용한 망 분리 구축 방법)

  • Hwang, Seong-Kyu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.8
    • /
    • pp.1071-1076
    • /
    • 2020
  • The importance of network separation is due to the use of the Internet with existing business PCs, resulting in an internal information leakage event, and an environment configured to allow servers to access the Internet, which causes service failures with malicious code. In order to overcome this problem, it is necessary to use network virtualization to separate networks and network interconnection systems. Therefore, in this study, the construction area was constructed into the network area for the Internet and the server farm area for the virtualization system, and then classified and constructed into the security system area and the data link system area between networks. In order to prove the excellence of the proposed method, a network separation construction study using network virtualization was conducted based on the basis of VM Density's conservative estimates of program loads and LOBs.

Effect of Flexible Cable and Friction Force of Small Form Factor Hard Disk Drive (소형 하드디스크 드라이브의 유연 케이블과 마찰력에 의한 영향에 대한 연구)

  • Kim, Seok-Hwan;Lee, Yong-Hyun;Kim, Ki-Hoon;Lee, Sang-Jik;Park, Young-Pil;Park, No-Cheol;Park, Kyoung-Su;Jung, Moon-Gyo
    • Transactions of the Society of Information Storage Systems
    • /
    • v.5 no.2
    • /
    • pp.96-101
    • /
    • 2009
  • In recent years, the demand for portable digital devices such as cellular phone, digital camera, and MP3 player has been largely increased. To meet the requirements of such portable applications the information storage devices with smaller size, higher capacity, and lower power consumption are needed. A small form factor (SFF) HDD using a load/unload (L/UL) system is one of the appropriate alternatives to satisfy these requirements. Due to complexity of L/UL process and mechanism, it is required to investigate for better understanding the effects of design parameters. Among the various design parameters, flexible cable and friction force on the L/UL ramp become important to the dynamic characteristics of L/UL process as the system is miniaturized. The program for L/UL simulation which considers the effect of flexible cable and L/UL ramp is needed. Unfortunately, there is hardly any commercial program for the L/UL simulation except the Computer Mechanics Laboratory (CML) air bearing design program and the CML L/UL simulation code. Furthermore, the design parameters such as flexible cable and the L/UL ramp are not considered in the CML L/UL simulation code. So we embody the L/UL simulation considering flexible cable and an L/UL ramp by using the ANSYS/LS-DYNA. In this thesis, the effects of flexible cable and friction force on the dynamic characteristics and the performances of the L/UL process are studied. Numerical simulation and related experiments are carried out and compared each other.

  • PDF

ASCENT THERMAL ANALYSIS OF FAIRING OF SPACE LAUNCH VEHICLE

  • Choi Sang-Ho;Kim Seong-Lyong;Kim Insun
    • Bulletin of the Korean Space Science Society
    • /
    • 2004.10b
    • /
    • pp.239-242
    • /
    • 2004
  • The fairing of the launch vehicles has a role of protecting the spacecraft from outer thermal, acoustical, and mechanical loads during flight. Among them, the thermal load is analyzed in the present study. The ascent thermal analyses include aerodynamic heating rate on every point of the fairing, heat transfer through the fairing and spacecraft, and the final temperature during ascent flight phase. A design code based on theoretical/experimental database is applied to calculate the aerodynamic heating rate, and a thermal math program, SINDA/Fluint, is considered for conductive heat transfer of the fairing. The results show that the present design satisfies the allowing temperature of the structure. Another important thermal problem, pyro explosive fairing separation device, is calculated because the pyro system is very sensitive to the temperature. The results also satisfies the pyro thermal condition.

  • PDF

The Layer of Emotion that Makes up the Poem "Falling Flowers(落花) " by Cho Ji-Hoon

  • In-Kwa, Park
    • International Journal of Advanced Culture Technology
    • /
    • v.5 no.4
    • /
    • pp.1-9
    • /
    • 2017
  • This study of Cho Ji - Hoon's Poem "Falling Flowers" was attempted to find the mechanism of poetic healing and utilize it for literary therapy. In this study, I examined how Cho Ji-Hoon's poem "Falling Flowers" encoded crying. Especially, we focused on the organic relationship of each layer represented by poem and put emotional codes on the layer of functor and argument. The results are as follow. It represents the Separation Layer of 1-3strophes, 4-6strophes constitute the Time Layer, and 7-9strophes the Sadness Layer. This poem proceeds the encoding of the sentence in which the crying of cuckoo in the 1-3strophes transforms into the crying of the poetic narrator in the last 9strophe. The relation of emotional layers in this poem is in the same function relations as "(1-3strophes) ${\subset}$ (4-6strophes) ${\subset}$ (7-9strophes)". Since these functional relations consist of the encoding of sadness, encrypts emotion signals of sadness as "U+U+U" becomes "UUU". 1-3strophes' U is the cry of the cuckoo, and U of the 4-6strophes is blood cry. Therefore, "UUU" is the blood cry of poetic narrator. This Cho Ji-Hoon's poem has a Han(恨) at its base. So, as Cho Ji-Hoon's poem "Falling Flowers" is uttered, the poetic mechanism of U, the code of sadness, is amplified. Then we get caught up in the emotions we want to cry. The poetic catharsis of "crying" is providing the effect of literary therapy. In the future, it will be possible to develop a more effective literary therapy technique by developing a literary therapy program like this poetic structure.

Development and Validations of the Aerodynamic Analysis Program of Multi-Rotors by Using a Free-Wake Method (자유후류 기법을 이용한 다중로터 공력해석 프로그램의 개발 및 검증)

  • Park, Sang-Gyoo;Lee, Jae-Won;Lee, Sang-Il;Oh, Se-Jong;Yee, Kwang-Jung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.10
    • /
    • pp.859-867
    • /
    • 2007
  • The objective of this study is to develop and validate a numerical method which can handle the multi-rotor aerodynamic characteristics. For the purpose of power estimation, table look-up method is implemented to the existing unsteady panel code that is coupled with a time-marching free wake model. Also, the Reynolds number scaling is implemented for the application to various regions of Reynolds number. The computed results are validated against the available experimental data for coaxial and tandem rotors. In the validation case for the coaxial rotor, more accurate result is acquired when the thickness effect is considered. The wake instability problem occurs at a particular separation distance between the rotors for tandem rotors. The wake instability is avoided by setting the single-rotor wake geometry as the initial wake geometry for the multi-rotor analysis. The estimated result for rotor separation effect is compared with the result of the momentum theory.