• Title/Summary/Keyword: Code Optimization

Search Result 594, Processing Time 0.03 seconds

Implementation of Query Processing System in Temporal Databases (시간지원 데이터베이스의 질의처리 시스템 구현)

  • Lee, Eon-Bae;Kim, Dong-Ho;Ryu, Keun-Ho
    • The Transactions of the Korea Information Processing Society
    • /
    • v.5 no.6
    • /
    • pp.1418-1430
    • /
    • 1998
  • Temporal databases support an efficient historical management by means of valid time and transaction time. Valid time stands for the time when a data happens in the real world. And transaction time stands for the time when a data is stored in the database, Temporal Query Processing System(TQPS) should be extended so as tc process the temporal operations for the historical informations in the user query as well as the conventional relational operations. In this paper, the extended temporal query processing systems which is based on the previous temporal query processing system for TQuel(Temporal Query Language) consists of the temporal syntax analyzer, temporal semantic analyzer, temporal code generator, and temporal interpreter is to be described, The algorithm for additional functions such as transaction time management, temporal aggregates, temporal views, temporal joins and the heuristic optimization functions and their example how to be processed is shown.

  • PDF

Handwritten Numerals Recognition Using an Ant-Miner Algorithm

  • Phokharatkul, Pisit;Phaiboon, Supachai
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1031-1033
    • /
    • 2005
  • This paper presents a system of handwritten numerals recognition, which is based on Ant-miner algorithm (data mining based on Ant colony optimization). At the beginning, three distinct fractures (also called attributes) of each numeral are extracted. The attributes are Loop zones, End points, and Feature codes. After these data are extracted, the attributes are in the form of attribute = value (eg. End point10 = true). The extraction is started by dividing the numeral into 12 zones. The numbers 1-12 are referenced for each zone. The possible values of Loop zone attribute in each zone are "true" and "false". The meaning of "true" is that the zone contains the loop of the numeral. The Endpoint attribute being "true" means that this zone contains the end point of the numeral. There are 24 attributes now. The Feature code attribute tells us how many lines of a numeral are passed by the referenced line. There are 7 referenced lines used in this experiment. The total attributes are 31. All attributes are used for construction of the classification rules by the Ant-miner algorithm in order to classify 10 numerals. The Ant-miner algorithm is adapted with a little change in this experiment for a better recognition rate. The results showed the system can recognize all of the training set (a thousand items of data from 50 people). When the unseen data is tested from 10 people, the recognition rate is 98 %.

  • PDF

Optimization of airborne alpha beta detection system modeling using MCNP simulation

  • Sung, Si Hyeong;Kim, Hee Reyoung
    • Nuclear Engineering and Technology
    • /
    • v.52 no.4
    • /
    • pp.841-845
    • /
    • 2020
  • An airborne alpha beta detection system using passivated implanted planar silicon (PIPS) detector was modeled with the MCNP6 code and its resolution and detection efficiency were analyzed. Simulation of the resolution performed using the Gaussian energy broadening (GEB) function showed that the full width at half maximum (FWHM) of 35.214 keV for alpha particles was within 34-38 KeV, which is the FWHM range of the actual detector, and the FWHM of 15.1 keV for beta particles was constructed with a similar model to 17 keV, which is the FWHM range of an actual detector. In addition, the detection efficiency and the resolution were simulated according to the distance between the detector and the air filter. When the distance was decreased to 0.2 cm from 0.8 cm, the efficiency of the alpha and beta particles detection decreased from 5.33% to 4.89% and from 5.64% to 4.27%, respectively, and the FWHM of the alpha and beta particles improved from 40.9 KeV to 29.84 keV and 25.76 keV-13.27 keV, respectively.

Ring-Rolling Design of a Large-Scale Ti-6Al-4V alloy (대형 Ti-6Al-4V 합금의 Ring-Rolling 공정설계)

  • Yeom, J.T.;Jung, E.J.;Kim, J.H.;Lee, D.G.;Park, N.K.;Choi, S.S.;Lee, C.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.373-376
    • /
    • 2006
  • The ring rolling design for a large-scale Ti-6Al-4V alloy ring was performed with a calculation method and FEM simulation. The ring rolling design includes geometry design and optimization of process variables. The calculation method was to determine geometry design such as initial billet and blank size, and final rolled ring shape. A commercial FEM code, SHAPE was used to simulate the effect of process variables in ring rolling on the distribution of the internal state variables such as strain, strain rate and temperature. In order to predict the forming defects during ring rolling, the process-map approach based on Ziegler's instability criterion was used with FEM simulation. Finally, an optimum process design to obtain sound Ti-6Al-4V rings without forming defects was suggested through combined approach of Ziegler's instability map and FEM simulation results.

  • PDF

OpenGL ES 2.0 based Shader Compilation Method for the Instruction-Level Parallelism (OpenGL ES 2.0 기반 셰이더 명령어 병렬 처리를 위한 컴파일 기법)

  • Kim, Jong-Ho;Kim, Tae-Young
    • Journal of Korea Game Society
    • /
    • v.8 no.2
    • /
    • pp.69-76
    • /
    • 2008
  • In this paper, we present the architecture of graphics processor and its instruction format for the mobile device. In addition, we introduce tile shader data structure for the on/off-line compilation based on the OpenGL ES 2.0 and a new optimization method based on the ILP(Instruction-Level Parallelism). This paper shows where a processor with the sane core clock is being used, the shader instruction resulted from the compile structure and method in this paper is approximately 1.5 to 2 times faster than a code based on the single instruction.

  • PDF

A Study on the Optimization of Fuel Injection Nozzle Geometry for Reducing NOx Emission in a Large Diesel Engine (대형 디젤 엔진의 연료 분사 노즐 형상이 NOx 발생량 및 연료소비율에 미치는 영향 연구)

  • Kim Ki-Doo;Ha Ji-Soo;Yoon Wook-Hyeon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.7
    • /
    • pp.1123-1130
    • /
    • 2004
  • Numerical simulations have been carried out to investigate the effect of nozzle hole geometry on the combustion characteristics of the large diesel engine. 6S90MC-C. Spray and combustion phenomena were examined numerically using FIRE code. Wane breakup and Zeldovich models were adopted to describe the atomization characteristics and NOx formation processes. Predictions on the cylinder peak pressure and NOx emission were first verified with the experimental data to confirm the reliability of numerical calculations. The comparison results showed good agreements within the range of 0.64% and 4.6% respectively. Finally, the effects of fuel spray angle and diameter on the engine performance were investigated numerically to find the optimum nozzle hole geometry considering fuel consumption, NOx emission and heat flux of the combustion chamber wall. It was concluded that the combustion gas recirculation in cylinder by changing fuel injection direction is an effective method to reduce NOx emission by about 10% with increasing fuel oil consumption, 1.4% in a large diesel engine.

A Study on the Optimization of Cylinder Head Port Flow for Hyundai H21/32 Medium-Speed Diesel Engines (현대 H21/32 중속 디젤엔진 실린더 헤드포트 최적화 연구)

  • Kim, Byung-Yoon;Kim, Jin-Won;Ghal, Sang-Hak
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.806-811
    • /
    • 2001
  • Since the characteristics of combustion and pollutant in Diesel engines were mainly effected by the characteristics of in-cylinder gas flow and fuel spray, an understanding of those was essential to the design of the D.I. Diesel engines. The improvement of volumetric efficiency of air charging into combustion chamber is a primary requirement to obtain better mean effective pressure of an engine. Since parameters such as the air resistances in intake and exhaust flow passages, valve lift and valve shape influence greatly to the volumetric efficiency, it is very important to investigate the flow characteristics of intake and exhaust port which develops air motion in the combustion chamber. In this study, two approach methods were used for design intake and exhaust port; experiment and computation which were made by using steady flow test rig and commercial CFD code. This paper presents the results of an experimental and analytical investigation of steady flow through the prototype cylinder head ports and valves of the HHI's H21/32 HIMSEN Engine.

  • PDF

Shape Design Sensitivity Analysis of Thermal Conduction Problems using Commercial Software ANSYS (상용 소프트웨어 ANSYS를 이용한 열전도문제의 형상설계 민감도 해석)

  • Choe, Ju-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.3 s.174
    • /
    • pp.645-652
    • /
    • 2000
  • A method for shape design sensitivity analysis is proposed utilizing commercial software ANSYS for thermal conduction problems. While the sensitivity formula is derived analytically by introduing adjoint variable concept, sensitivity calculation in practice as well as the primal and adjoint solution of thermal conduction is performed using the ANSYS very easily. Since the formula always takes boundary integral form, sensitivity evaluation in ANSYS requires a little more addition of post-processing routine which involves evaluation of boundary variable from the obtained solution. Though the BEM has been used as a better tool for this purpose, the present study shows it can also be calculated using any kind of analysis code such as ANSYS since the formula is based on analytic nature. Therefore the present study provides a new and efficient way of optimization which was not possible before using commercial software. The usefulness of the method is illustrated via a weight minimization problem of thermal diffuser.

A prolate spheroidal head modeling of head related transfer function based on ray tracing formula (선추적공식을 이용한 머리전달함수의 회전타원체 형상 모델링)

  • Jo, Hyun;Park, Young-Jin;Park, Youn-Sik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.934-938
    • /
    • 2008
  • To customize individual characteristics of HRTF, a spherical model has been used for structural modeling technique. A pseudo-code of prolate spheroidal HRTF caused by incident acoustic point source is already developed, and it can be used a head shadow filter for structural modeling of HRTF. In this research, to see the necessity and efficiency of spheroidal head modeling, ITD optimization is performed on CIPIC HRTF database. From given cost function, ITD-optimized spheroidal head model, whose ITD information is the most matched version of measured ITD information, is found by varying head parameters subject by subject. By comparing results of ITD-optimized spheroids and ITD-optimized spheres, we concluded that a spherical head model is more efficient way of generating head shadow effect than a spheroidal head model does.

  • PDF

Load & Resistance Factors Calibration for Limit State Design of Non-Perforated Caisson Breakwater (직립무공케이슨방파제 한계상태설계를 위한 하중저항계수 보정)

  • Kim, Dong Hyawn
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.6
    • /
    • pp.351-355
    • /
    • 2019
  • Load resistance factors for the limit state design of vertical caisson breakwaters are presented. Reliability analysis of 16 breakwaters in nationwide ports was conducted to calculate the partial safety factors and they were converted into load and resistance factors. The final load resistance factor was calibrated by applying the optimization technique to the individually calculated load resistance factors. Finally, the breakwater was redesigned using the optimal load resistance factor and verified whether the target level was met. The load resistance factor according to the change of the target reliability level is presented to facilitate the limit state design of breakwater.