• Title/Summary/Keyword: Code Motion

Search Result 462, Processing Time 0.027 seconds

Numerical Simulation of a Viscous Flow Field Around a Deforming Foil Using the Hybrid Cartesian/Immersed Boundary Method (Hybrid Cartesian/Immersed Boundary 법을 이용한 2차원 변형날개 주위 점성유동 해석)

  • Shin, Sang-Mook;Kim, Hyoung-Tae
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.43 no.5 s.149
    • /
    • pp.538-549
    • /
    • 2006
  • A code is developed to simulate a viscous flow field around a deformable body using the hybrid Cartesian/immersed boundary method. In this method, the immersed boundary(IB) nodes are defined near the body boundary then velocities at the IB nodes are reconstructed based on the interpolation along the normal direction to the body surface. A new method is suggested to define the IB nodes so that a closed fluid domain is guaranteed by a set of IB nodes and the method is applicable to a zero-thickness body such as a sail. To validate the developed code, the vorticity fields are compared with other recent calculations where a cylinder orbits and moves into its own wake. It is shown the code can handle a sharp trailing edge at Reynolds number of $10^5$ under moderate requirements on girds. Finally the developed code is applied to simulate the vortex shedding behind a deforming foil with flapping tail like a fish. It is shown that the acceleration of fluids near the flapping tail contributes to the generation of the thrust for propulsion.

Study on the Behavior Characteristics of Gasoline-Fuel Spray by Using a Numerical Analysis (수치해석을 이용한 가솔린연료 분무 거동특성 연구)

  • Yeom, Jeong-Kuk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.12
    • /
    • pp.992-999
    • /
    • 2009
  • The focus of this study is placed on the behavior characteristics of gasoline spray under condition field of room temperature and pressure. To analyze the behavior and flow characteristics of injected fuel spray is important in speculation of mixture formation process. Also the exhausted emissions from actual engines can be controlled by the analyzed results. The ${\varphi}$(degree of freedom) and K(energy ratio of particle motion) are selected as the simulation parameter. The factors affect characteristics of spray structure, and the factors are included in the sub-program of the KIVA-II code. In this study, the simulation study by modified KIVA-II code was conducted and the calculated results obtained by the modified KIVA-II code show good agreements with experimental results. As a result, applying the improved TAB model with ${\varphi}$=8 and K=2 to simulation analysis of the KIVA-II code is sufficiently useful for analyzing the macro characteristics in spray structure, such as the spray tip penetration of injected fuel spray.

Fast Sub-pixel Search Control by using Neighbor Motion Vector in H.264 (H.264에서 주변 움직임 벡터를 이용한 고속 부 화소 탐색 제어 기법)

  • La, Byeong-Du;Eom, Min-Young;Choe, Yoon-Sik
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.3
    • /
    • pp.16-22
    • /
    • 2007
  • Motion Estimation time in the H.264 has a large portion of encoding time and must be improved for real time application. Most of proposed motion estimation algorithm including Sub-pixel search use the fast search algorithm to speed up motion estimation by targeting the performance of full search in the reference code. This paper proposes a novel fast sub-pixel search control algorithm for H.264 encoder by using neighbor motion vector after analyzing the encoded Motion vector of video sequence. In addition the horizontal/vertical searching method is proposed with the horizontal/vertical directionality of motion vector. And the evaluation is performed with the proposed algorithms and other reference algorithms.

Development of the High Efficient 2-axis Step Motion Control System using NI PXI-7352 (NI PXI-7352를 활용한 PC 기반의 고성능 2축 스텝 모션 제어시스템 개발)

  • Lee, Un-Seon;Park, Man-Gon
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.2
    • /
    • pp.179-184
    • /
    • 2010
  • The automatic control and motion control technology including the sensor network technology are important in the ubiquitous environment to make human life easy. In the industrial site and living environment, the demand for the motion control technology and position control technology which are faster and more precise is increasing. Especially, demand for the PC based motion control system is mounting in order to keep up with the improved GUI environment and ever-changing industrial site. This research is focused to develop the Highly Efficient 2-axis Step Motion Control System which can be variously applied in the industrial site on the basis of the LabVIEW - graphic code programming language - with user interface, using the NI PXI-7352 controller and the NI step motor in which it provides the high reliability and the precise motion control.

Distributed Video Coding Based on Selective Block Encoding Using Feedback of Motion Information (움직임 정보의 피드백을 갖는 선택적 블록 부호화에 기초한 분산 비디오 부호화 기법)

  • Kim, Jin-Soo;Kim, Jae-Gon;Seo, Kwang-Deok;Lee, Myeong-Jin
    • Journal of Broadcast Engineering
    • /
    • v.15 no.5
    • /
    • pp.642-652
    • /
    • 2010
  • Recently, DVC (Distributed Video Coding) techniques are drawing a lot of interests as one of the future research works to achieve low complexity encoding in various applications. But, due to the limited computational complexity, the performances of DVC algorithms are inferior to those of conventional international standard video coders, which use zig-zag scan, run length code, entropy code and skipped macroblock. In this paper, in order to overcome the performance limit of the DVC system, the distortion for every block is estimated when side information is found at the decoder and then we propose a new selective block encoding scheme which provides the encoder side with the motion information for the highly distorted blocks and then allows the sender to encode the motion compensated frame difference signal. Through computer simulations, it is shown that the coding efficiency of the proposed scheme reaches almost that of the conventional inter-frame coding scheme.

Mushroom skeleton to create rocking motion in low-rise steel buildings to improve their seismic performance

  • Mahdavi, Vahid;Hosseini, Mahmood;Gharighoran, Alireza
    • Earthquakes and Structures
    • /
    • v.15 no.6
    • /
    • pp.639-654
    • /
    • 2018
  • Rocking motion have been used for achieving the 'resilient buildings' against earthquakes in recent studies. Low-rise buildings, unlike the tall ones, because of their small aspect ratio tend to slide rather than move in rocking mode. However, since rocking is more effective in seismic response reduction than sliding, it is desired to create rocking motion in low-rise buildings too. One way for this purpose is making the building's structure rock on its internal bay(s) by reducing the number of bays at the lower part of the building's skeleton, giving it a mushroom form. In this study 'mushroom skeleton' has been used for creating multi-story rocking regular steel buildings with square plan to rock on its one-by-one bay central lowest story. To show if this idea is effective, a set of mushroom buildings have been considered, and their seismic responses have been compared with those of their conventional counterparts, designed based on a conventional code. Also, a set of similar buildings with skeleton stronger than code requirement, to have immediate occupancy (IO) performance level, have been considered for comparison. Seismic responses, obtained by nonlinear time history analyses, using scaled three-dimensional accelerograms of selected earthquakes, show that by using appropriate 'mushroom skeleton' the seismic performance of buildings is upgraded to mostly IO level, while all of the conventional buildings experience collapse prevention (CP) level or beyond. The strong-skeleton buildings mostly present IO performance level as well, however, their base shear and absolute acceleration responses are much higher than the mushroom buildings.

FLUID-BODY INTERACTION ANALYSIS OF FLOATING BODY IN THREE DIMENSIONS (3차원 부유체의 유체-물체 연성해석)

  • Go, G.S.;Ahn, H.T.
    • Journal of computational fluids engineering
    • /
    • v.20 no.2
    • /
    • pp.103-108
    • /
    • 2015
  • Fluid-body interaction analysis of floating body with six degree-of-freedom motion is presented. In this study, three-dimensional incompressible Navier-Stokes equations are employed as a governing equation. The numerical method is based on a finite-volume approach on a cartesian grid together with a fractional-step method. To represent the body motion, the immersed boundary method for direct forcing is employed. In order to simulate the coupled six degree-of-freedom motion, Euler's equations based on rigid body dynamics are utilized. To represent the complex body shape, level-set based algorithm is utilized. In order to describe the free surface motion, the volume of fluid method utilizing the tangent of hyperbola for interface capturing scheme is employed. This study showed three different continuums(air, water and body) are simultaneously simulated by newly developed code. To demonstrate the applicability of the current approach, two different problems(dam-breaking with stationary obstacle and water entry) are simulated and all results are validated.

A Numerical Study on Dynamic Instability Motion Control of Wave-Piercing High-Speed Planing Craft in Calm Water using Side Appendages

  • Kim, Sang-Won;Seo, Kwang-Cheol;Lee, Dong-Kun;Lee, Gyeong-Woo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.3
    • /
    • pp.320-329
    • /
    • 2017
  • In this research, we have calculated characteristics of wave-piercing high-speed planing hull, by using a RANS solver and overset grid method, for comparing with experimental measurements of that and simulating with several appendages, since the computed results of commercial CFD code look reasonable for the prediction of the performances of planing hulls on calm water in planing conditions. As a result, it is confirmed that the dynamic instability phenomena in pitch and heave motions (porpoising) occurred after a certain $Fn_V$, and effectively suppressed using some of appendages, especially the 0.5L spray rail is suppressed to 24-55 % in the pitch motion and 33-55 % in the heave motion. In spray phenomenon, 1L hard chine suppress spray effectively and it is effective to set the angle of appendages to be less than $0^{\circ}$ in order to suppress wave.

Circular Motion Test Simulation of KVLCC1 Using CFD (CFD를 이용한 KVLCC1의 Circular Motion Test 시뮬레이션)

  • Shin, Hyun-Kyoung;Jung, Jae-Hwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.3
    • /
    • pp.377-387
    • /
    • 2010
  • In this study, the turbulent free surface around KVLCC1 employed in the circular motion test simulation is numerically calculated using a commercial CFD(Computational Fluid Dynamics) code, FLUENT. Also, hydrodynamic forces and yaw moments around a ship model are calculated during the steady turning. Numerical simulations of the turbulent flows with free surface around KVLCC1 have been carried out by use of RANS equation based on calculation of hydrodynamic forces and yaw moments exerted upon the ship hull. Wave elevation is simulated by using the VOF method. VOF method is known as one of the most effective numerical techniques handling two-fluid domains of different density simultaneously. Boundary layer thickness and wake field are changed various yaw velocities of ship model during the steady turning. The calculated hydrodynamic forces are compared with those obtained by model tests.

Added Resistance and 2DOF Motion Analysis of KVLCC2 in Regular Head Waves using Dynamic Overset Scheme (동적 중첩격자 기법을 이용한 KVLCC2의 파랑중 부가저항 및 2자유도 운동 해석)

  • Kim, Yoo-Chul;Kim, Yoonsik;Kim, Jin;Kim, Kwang-Soo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.5
    • /
    • pp.385-393
    • /
    • 2018
  • In this study, the analysis of 2DOF (2 Degree Of Freedom) motion and added resistance of a ship in regular head waves is carried out using RANS (Reynolds Averaged Navier-Stokes) approach. In order to improve the accuracy for large amplitude motions, the dynamic overset scheme is adopted. One of the dynamic overset schemes, Suggar++ is applied to WAVIS which is the in-house RANS code of KRISO (Korea Research Institute of Ships and Ocean Engineering). The grid convergence test is carried out using the present scheme before the analysis. The target hull form is KRISO VLCC tanker (KVLCC2) and 13 wave length conditions are applied. The present scheme shows the improved results comparing with the results of WAVIS2 in the non-inertial reference frame. The dynamic overset scheme is confirmed to give the comparatively better results for the large amplitude motion cases than the non-inertial frame based scheme.