• Title/Summary/Keyword: Code Diversity

Search Result 305, Processing Time 0.025 seconds

High-Performance Time-Code Diversity Scheme for Shore-to-Sea Maritime Visible-Light Communication

  • Kim, Hyeongji;Sewaiwar, Atul;Chung, Yeon-Ho
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.5
    • /
    • pp.514-520
    • /
    • 2015
  • This paper presents a novel shore-to-sea maritime data transmission system based on time-code diversity, using visible light in maritime environments to overcome the limitations of conventional maritime wireless communications. The proposed system is primarily comprised of existing LED-based lighthouses and maritime transceivers (marine beacons, buoys, etc.), and thus is considered cost-effective in terms of implementation. We first analyze maritime visible-light communications on the basis of the unique properties of a maritime environment, i.e. sea states (wave height, wind speed, etc.), plus atmospheric turbulence, using the Pierson-Moskowitz (PM) and JONSWAP (JS) spectrum models. It is found that the JS model outperforms the PM model, and that the coverage distance depends on the LED power and sea states. To combat maritime fading conditions that significantly degrade performance and coverage distance, we propose a time-code diversity (TCD) scheme in which the delayed versions of the original data are retransmitted using orthogonal Walsh codes. This TCD scheme is found to be superior, in that it offers three orders of magnitude in terms of BER performance, compared to a conventional (non-TCD) transmission scheme. The proposed scheme is robust and efficient in overcoming the effect of impairments present in maritime environments with a BER of approximately $10^{-5}$and a data rate of 100 Kbps at a distance of 1 km.

Decoding Performance of Quasi-Orthogonal Space Time Block Code Using Optimal Transmit Power Allocation (최적 송신전력 할당을 이용한 준직교성 시공간 블록부호의 복호화 성능)

  • Choe Kwang don;Kim Bong joon;Cho Young ha;Park Sang kyu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.4A
    • /
    • pp.282-287
    • /
    • 2005
  • The space time block code(STBC) can not provide simultaneously both full diversity and full transmission rate in a transmit diversity system having more than two transmit antennas.. There are a quasi orthogonal STBC for four transmit antennas that provides full transmission rate and minimized interference. Recently, a simple correlation canceling algorithm is introduced to achieve full diversity from STBC considering four transmit antennas. In this paper, we propose a new decoding procedure using the power allocation at the transmitter and subtraction interference process at the receiver to achieve a better performance without noise enhancement.

Performance evaluation of diversity reception of underwater acoustic code division multiple access using lake experiment (저수지 실험을 통한 수중 음향 코드 분할 다중 접속 방식의 다이버시티 수신 성능 검증)

  • Seo, Bo-Min;Cho, Ho-Shin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.36 no.1
    • /
    • pp.39-48
    • /
    • 2017
  • CDMA (Code Division Multiple Access) is promising medium access control schemes for underwater acoustic sensor networks because of its robustness against frequency-selective fading and high frequency-reuse efficiency. In this paper, we design diversity schemes of underwater CDMA transceiver for the forward and reverse links. User data are multiplexed by Walsh code and a pseudo random noise code acquisition process is added for phase error correction before decoding the user data at the receiver. Then, the diversity reception using equal gain combining and maximal ratio combining is performed in order to minimize performance degradation caused by rich multipath fading of underwater acoustic channel. We evaluated the performance of diversity transceiver through lake experiment, which was performed at Lake Kyungcheon, Mungyeong city using two transmitters and two receivers placed 460 m apart at an average depth of 40 m. The lake experiment results show that user data are recovered with error-free in both of the forward and reverse links.

Error Rate Performance of FH/MFSK Signal with Diversity and Coding Technique in the Interference and Fading Environments (간섭과 페이딩 환경하에서 다이버시티와 부호화 기법을 이용하는 FH/MFSK 신호의 오율 특성)

  • 이문승;심수보
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.17 no.11
    • /
    • pp.1311-1319
    • /
    • 1992
  • In the partial-band interference and Rayleigh fading environments, the bit error probability equation of FH/MFSK signal has been derived and the error rate has been evaluated. And the results are shown in graphs and discussed. Here, to improve the error rate performance the repeated diversity and the error-correction coding techniques are adopted. The degree of improvement of error rate performance has been found out in diversity and coding techniques respectively. In diversity case, repetition number is taken as a parameter and in coding case, as the error-correction codes Hamming code, BCH code, and convolutional code are introduced. From the obtained results, we have known that the increase of the number of repetition in diversity technique has been brought a little improvement of performance but the coding technique considerable improvement and in particular, convolutional code is very effective. Therefore, coding technique is considered to be better than repeated diversity to cope with Rayleigh fading and partial-band interference.

  • PDF

Code Acquisition with Receive Diversity and Constant False Alarm Rate Schemes: 2. Nonhomogeneous Fading Circumstance (수신기 다양성과 일정 오경보 확률 방법을 쓴 부호획득: 2. 벼균질 감쇄 환경)

  • Kwon Hyoung-Moon;Kang Hyun-Gu;Park Ju-Ho;Ahn Tae-Hoon;Lee Sung-Ro;Song Iick-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.7C
    • /
    • pp.725-734
    • /
    • 2006
  • As a sequel to Part 1, the performance characteristics of the cell averaging (CA), greatest of (GO), and smallest of (SO) constant false alarm rate (CFAR) processors in nonhomogeneous environment are obtained and compared when receiving antenna diversity is employed in the pseudonoise (PN) code acquisition of direct-sequence code division multiple access (DS/CDMA) systems. Unlike in homogeneous environment, the GO CFAR processor is observed to exhibit the best performance in nonhomogeneous environment, with the CA CFAR processor performing the second best.

Code Acquisition with Receive Diversity and Constant False Alarm Rate Schemes: 1. Homogeneous Fading Circumstance (수신기 다양성과 일정 오경보 확률 방법을 쓴 부호획득: 1. 균질 감쇄 환경)

  • Kwon Hyoung-Moon;Oh Jong-Ho;Song Iick-Ho;Lee Ju-Mi
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.4C
    • /
    • pp.371-380
    • /
    • 2006
  • The performance characteristics of the cell averaging(CA), greatest of(GO), and smallest of(SO) constant false alarm rate(CFAR) processors in homogeneous environment are obtained and compared when receiving antenna diversity is employed in the pseudonoise code acquisition of direct-sequence code division multiple access (DS/CDMA) systems. From the simulation results, it is observed that the CA CFAR scheme has the best performance and the GO CFAR scheme has almost the same performance as the CA CFAR scheme in homogeneous environment. In Part 2 of this paper, the CA, GO, and SO CFAR processors for code acquisition in nonhomogeneous environment are addressed.

Performance of cellular hybrid DS/FH spread spectrum systems with diversity on nakagami fading channel (나카가미 페이딩 채널하에서 다이버시티를 갖는 셀룰러 하이브리드 DS/FH 확산대역 시스팀의 성능)

  • 조현욱;박상규
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.2
    • /
    • pp.10-21
    • /
    • 1998
  • In this paper, we analyze the anynchrous cellular hybrid DS/FH spread spectrum system with diversity on nonselective Nakagami fading channel. Binary Psk scheme is considered and random spreading code sequences and random hopping patterns are used. We compare the performance of system using hard-limiting correlation receiver with diversity and linear corrleation receiver in Nakagami fading channel. We compute the average bit error probabilities with/without diversity according to spreading code sequence and the number of hop-ping frequencies under the same handwith espansion, and analyze near-far effect. The results show that hard-limiting correlation receiver with diversity gives a good performance over severe fading channel.

  • PDF

Study on the Diversity Method to Improve the Performance of the CDMA System in the Mobile Wireless Channel

  • Lee Kwan-Houng
    • Journal of information and communication convergence engineering
    • /
    • v.3 no.1
    • /
    • pp.1-4
    • /
    • 2005
  • This study proposes a new diversity algorithm to improve the signal-to-noise ratio. In the wireless channel, if fading occurs due to the multipaths, the performance of the system is apparently reduced. One of the methods to reduce fadings like this is the diversity method, and this study aims to improve the performance of the system by proposing a new diversity algorithm. This study applied rake receiver, and normalized the wireless channel from the Nakagami fading channel to the Rayleigh fading channel, which set the fading index as 1, because of the multipaths. It applied QPSK and OQPSK modulation methods and applied the convolutional codes, where the code rate is 1/2 and 1/3 and the constraint length is 9, and the turbo code where the constraint length is 4. Under these conditions, this study compared and analyzed the average error probability of direct spread multiple access system. The diversity algorithm proposed in this paper could be applied to the mobile communication and other wireless multimedia communications that require high quality and high reliability.

The Softest handoff Design using iterative decoding (Turbo Coding)

  • Yi, Byung-K.;Kim, Sang-G.;Picknoltz, Raymond-L.
    • Journal of Communications and Networks
    • /
    • v.2 no.1
    • /
    • pp.76-84
    • /
    • 2000
  • Communication systems, including cell-based mobile communication systems, multiple satellite communication systems of multi-beam satellite systems, require reliable handoff methods between cell-to-cell, satellite-to-satellite of beam-to-team, respectively. Recent measurement of a CDMA cellular system indicates that the system is in handoff at about 35% to 70% of an average call period. Therefore, system reliability during handoff is one of the major system performance parameters and eventually becomes a factor in the overall system capacity. This paper presents novel and improved techniques for handoff in cellular communications, multi-beam and multi-satellite systems that require handoff during a session. this new handoff system combines the soft handoff mechanism currently implemented in the IS-95 CDMA with code and packet diversity combining techniques and an iterative decoding algorithm (Turbo Coding). the Turbo code introduced by Berrou et all. has been demonstrated its remarkable performance achieving the near Shannon channel capacity [1]. Recently. Turbo codes have been adapted as the coding scheme for the data transmission of the third generation international cellular communication standards : UTRA and CDMA 2000. Our proposed encoder and decoder schemes modified from the original Turbo code is suitable for the code and packet diversity combining techniques. this proposed system provides not only an unprecedented coding gain from the Turbo code and it iterative decoding, but also gain induced by the code and packet diversity combining technique which is similar to the hybrid Type II ARQ. We demonstrate performance improvements in AWGN channel and Rayleigh fading channel with perfect channel state information (CSI) through simulations for at low signal to noise ratio and analysis using exact upper bounding techniques for medium to high signal to noise ratio.

  • PDF

Interleaving Delay Diversity with Antenna Selection or the Multi-code WCDMA System (다중 코드 WCDMA 시스템에서 안테나 선택 기법을 적용한 인터리빙 딜레이 다이버시티 연구)

  • 정숙현;김낙명
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.6A
    • /
    • pp.600-606
    • /
    • 2004
  • An interleaving delay diversity scheme is investigated in this paperand the applications in the multi-code WCDMA system along with antenna selection diversity is proposed. The proposed algorithm utilizes interleaving and delayed duplicated transmission mechanism to mitigate the effect of noise and fading. The interleaved signal and the original signal are both transmitted at intervals to obtain time diversity without any increase in required capacity. By adjusting the number of retransmissions of the information signal properly, the system achieve the receive diversity efficiently. For transmission power efficiency the proposed system also applies antenna selection diversity. By computer simulation, it has been shown that the proposed algorithm achieves better performance than the conventional algorithms by more than 2dB.