DOI QR코드

DOI QR Code

Performance evaluation of diversity reception of underwater acoustic code division multiple access using lake experiment

저수지 실험을 통한 수중 음향 코드 분할 다중 접속 방식의 다이버시티 수신 성능 검증

  • 서보민 (경북대학교 IT대학 전자공학부) ;
  • 조호신 (경북대학교 IT대학 전자공학부)
  • Received : 2016.11.18
  • Accepted : 2017.01.25
  • Published : 2017.01.31

Abstract

CDMA (Code Division Multiple Access) is promising medium access control schemes for underwater acoustic sensor networks because of its robustness against frequency-selective fading and high frequency-reuse efficiency. In this paper, we design diversity schemes of underwater CDMA transceiver for the forward and reverse links. User data are multiplexed by Walsh code and a pseudo random noise code acquisition process is added for phase error correction before decoding the user data at the receiver. Then, the diversity reception using equal gain combining and maximal ratio combining is performed in order to minimize performance degradation caused by rich multipath fading of underwater acoustic channel. We evaluated the performance of diversity transceiver through lake experiment, which was performed at Lake Kyungcheon, Mungyeong city using two transmitters and two receivers placed 460 m apart at an average depth of 40 m. The lake experiment results show that user data are recovered with error-free in both of the forward and reverse links.

코드 분할 다중 접속 기법은 주파수 선택적 페이딩에 강인할 뿐만 아니라 주파수 재사용 효율이 좋으므로 열악한 수중 환경에서의 유망한 매체 접속 제어 기법으로 많은 연구가 진행되고 있다. 본 논문에서는 다이버시티 기법을 적용한 수중 코드 분할 다중 접속 기법의 순방향 및 역방향 링크 트랜스시버를 설계한다. 사용자 데이터는 월시 부호를 사용하여 다중화되며, 유사 잡음 부호 획득 과정을 통해 위상 오류 정정 및 유사 잡음 부호 역확산을 수행한다. 수중 음향 채널의 다중 경로 페이딩에 의한 트랜스시버 성능 감소를 최소화하기 위해 동일 이득 합성 및 최대비 합성의 다이버시티 기법을 적용한다. 다이버시티 기법으로 인한 트랜스시버의 성능 개선을 확인하기 위해 평균 수심 40 m의 문경시 경천호에서 두 개의 송신기와 두 개의 수신기를 활용하여 460 m 거리에서 저수지 실험을 수행하였으며, 결과적으로 순방향 및 역방향 링크 모두 사용자 데이터가 오류 없이 복원되었다.

Keywords

References

  1. I. F. Akyildiz, D. Pompili, and T. Melodia, "Underwater acoustic sensor networks: research challenges," Ad Hoc Netw. (Elsevier), 3, 257-259 (2005). https://doi.org/10.1016/j.adhoc.2005.01.004
  2. L. Xavier, An Introduction to Underwater Acoustics - Principles and Applications (Springer Praxis, New York, 2002), pp. 295-302.
  3. M. Stojanovic and C. J. Preisig, "Underwater acoustic communication channels: propagation models and statistical characterization," IEEE Comm. Mag. 47, 84-89 (2009).
  4. M. Stojanovic, "On the relationship between capacity and distance in an underwater acoustic communication channel," in Proc. ACM SIGMOBILE Mobile Comput. and Comm. Rev. 34-43 (2007).
  5. J.-H. Cui, J. Kong, M. Gerla, and S. Zhou, "Challenges: building scalable mobile underwater wireless sensor networks for aquatic applications," IEEE Network, Special Issue on Wireless Sensor Networking 2006, 20, 12-18 (2006).
  6. E. Sozer, J. Proakis, M. Stojanovic, J. Rice, A. Benson, and M. Hatch, "Direct sequence spread spectrum based modem for underwater acoustic communication and channel measurements," in Proc. MTS/IEEE OCEANS '99, 228-233 (1999).
  7. L. Freitag, M. Stojanovic, S. Singh, and M. Johnson, "Analysis of channel effects on direct-sequence and frequency-hopped spread-spectrum acoustic communication," IEEE J. Oceanic Engineering, 26, 586-593 (2001). https://doi.org/10.1109/48.972098
  8. E. Cheng, Z. Zhuang, K. Zeng, Y. Qi, and J. Deng, "Performance analysis of underwater acoustic FH-CDMA network," in Proc. ASID, 2008, 101-104 (2008).
  9. J. Yan, R. Xu, D. Wang, H. Chen, and X. Hu, "Study on MC-CDMA for underwater acoustic networks," in Proc. Computer Sci. and Software Eng. 2008, 614-617 (2008).
  10. D. Pompili, T. Melodia, and I. F. Akyildiz, "A CDMAbased medium access control for underwater acoustic sensor networks," IEEE Trans. Wireless Commun. 8, 1899-1909 (2009). https://doi.org/10.1109/TWC.2009.080195
  11. J.-P. Kim, J.-W. Lee, Y.-S. Jang, K. Son, and H.-S. Cho, "A CDMA-Based MAC protocol in tree-topology for underwater acoustic sensor networks," in Proc. WAINA'09, 1166-1171 (2009).
  12. H. Chen, G. Fan, L. Xie, and J.-H. Cui, "A hybrid path-oriented code assignment CDMA-Based MAC protocol for underwater acoustic sensor networks," Sensors, 13, 15006-15025 (2013). https://doi.org/10.3390/s131115006
  13. M. Stojanovic, and L. Freitag, "Wideband underwater acoustic CDMA: adaptive multichannel receiver design," in Proc. MTS/IEEE OCEANS 2005, 1508-1513 (2005).
  14. S. Guo, Z. Zhao, and Q. Pan, "A CDMA acoustic communication system for multiple underwater robots," in Proc. ROBIO 2008, 1522-1526 (2009).
  15. S. Guo and Z. Zhao, "Design of a QPSK-CDMA acoustic communication system for multiple underwater vehicles," in Proc. ICMA 2009, 3568-3572 (2009).
  16. B.-M. Seo, J. Cho, K. Son, and H,-S. Cho, "Design for underwater code division multiple access transceiver," in Proc. Oceans' 13, 1-5 (2013).
  17. M.-S. Alouini, S. W. Kim, and A. Goldsmith, "Rake reception with maximal-ratio and equal-gain combining for DS-CDMA systems in nakagami fading," Universal Personal Comm. record 1997, 2, 708-712 (1997).
  18. Channel Technologies Group Ltd., http://www.channeltechgroup.com/publication/model-itc-1001-spherical-omnidirectional-transducer/, 2016.
  19. Neptune Sonar, http://www.neptune-sonar.co.uk/, 2016.
  20. Bruel & Kjaer, http://www.bksv.com/, 2016.