• Title/Summary/Keyword: Code Clustering

Search Result 63, Processing Time 0.029 seconds

Design and Implementation of High-Performance Cryptanalysis System Based on GPUDirect RDMA (GPUDirect RDMA 기반의 고성능 암호 분석 시스템 설계 및 구현)

  • Lee, Seokmin;Shin, Youngjoo
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.32 no.6
    • /
    • pp.1127-1137
    • /
    • 2022
  • Cryptographic analysis and decryption technology utilizing the parallel operation of GPU has been studied in the direction of shortening the computation time of the password analysis system. These studies focus on optimizing the code to improve the speed of cryptographic analysis operations on a single GPU or simply increasing the number of GPUs to enhance parallel operations. However, using a large number of GPUs without optimization for data transmission causes longer data transmission latency than using a single GPU and increases the overall computation time of the cryptographic analysis system. In this paper, we investigate GPUDirect RDMA and related technologies for high-performance data processing in deep learning or HPC research fields in GPU clustering environments. In addition, we present a method of designing a high-performance cryptanalysis system using the relevant technologies. Furthermore, based on the suggested system topology, we present a method of implementing a cryptanalysis system using password cracking and GPU reduction. Finally, the performance evaluation results are presented according to demonstration of high-performance technology is applied to the implemented cryptanalysis system, and the expected effects of the proposed system design are shown.

Deep Learning based Dynamic Taint Detection Technique for Binary Code Vulnerability Detection (바이너리 코드 취약점 탐지를 위한 딥러닝 기반 동적 오염 탐지 기술)

  • Kwang-Man Ko
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.3
    • /
    • pp.161-166
    • /
    • 2023
  • In recent years, new and variant hacking of binary codes has increased, and the limitations of techniques for detecting malicious codes in source programs and defending against attacks are often exposed. Advanced software security vulnerability detection technology using machine learning and deep learning technology for binary code and defense and response capabilities against attacks are required. In this paper, we propose a malware clustering method that groups malware based on the characteristics of the taint information after entering dynamic taint information by tracing the execution path of binary code. Malware vulnerability detection was applied to a three-layered Few-shot learning model, and F1-scores were calculated for each layer's CPU and GPU. We obtained 97~98% performance in the learning process and 80~81% detection performance in the test process.

Voice Activity Detection Algorithm base on Radial Basis Function Networks with Dual Threshold (Radial Basis Function Networks를 이용한 이중 임계값 방식의 음성구간 검출기)

  • Kim Hong lk;Park Sung Kwon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.12C
    • /
    • pp.1660-1668
    • /
    • 2004
  • This paper proposes a Voice Activity Detection (VAD) algorithm based on Radial Basis Function (RBF) network using dual threshold. The k-means clustering and Least Mean Square (LMS) algorithm are used to upade the RBF network to the underlying speech condition. The inputs for RBF are the three parameters in a Code Exited Linear Prediction (CELP) coder, which works stably under various background noise levels. Dual hangover threshold applies in BRF-VAD for reducing error, because threshold value has trade off effect in VAD decision. The experimental result show that the proposed VAD algorithm achieves better performance than G.729 Annex B at any noise level.

Design of Classification Methodology of Malicious Code in Windows Environment (윈도우 악성코드 분류 방법론의 설계)

  • Seo, Hee-Suk;Choi, Joong-Sup;Chu, Pill-Hwan
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.19 no.2
    • /
    • pp.83-92
    • /
    • 2009
  • As the innovative internet technologies and multimedia are being rapidly developed, malicious codes are a remarkable new growth part and supplied by various channel. This project presents a classification methodology for malicious codes in Windows OS (Operating System) environment, develops a test classification system. Thousands of malicious codes are brought in every day. In a result, classification system is needed to analyzers for supporting information which newly brought malicious codes are a new species or a variety. This system provides the similarity for analyzers to judge how much a new species or a variety is different to the known malicious code. It provides to save time and effort, to less a faulty analysis. This research includes the design of classification system and test system. We classify the malicious codes to 9 groups and then 9 groups divide the clusters according to the each property.

Invariant Biometric Key Extraction based on Iris Code (홍채 코드 기반 생체 고유키 추출에 관한 연구)

  • Lee, Youn-Joo;Lee, Hyung-Gu;Park, Kang-Ryoung;Kim, Jai-Hie
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.1011-1014
    • /
    • 2005
  • In this paper, we propose a method that extracts an invariant biometric key in order to apply this biometric key to the crypto-biometric system. This system is a new authentication architecture which can improve the security of current cryptographic system and solve the problem of stored template protection in conventional biometric system, also. To use biometric information as a cryptographic key in crypto-biometric system, same key should be generated from the same person. However, it is difficult to obtain such an invariant biometric key because biometric data is sensitive to surrounding environments. The proposed method solves this problem by clustering Iris Codes obtained by using independent component analysis (ICA).

  • PDF

Cyber-attack group analysis method based on association of cyber-attack information

  • Son, Kyung-ho;Kim, Byung-ik;Lee, Tae-jin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.1
    • /
    • pp.260-280
    • /
    • 2020
  • Cyber-attacks emerge in a more intelligent way, and various security technologies are applied to respond to such attacks. Still, more and more people agree that individual response to each intelligent infringement attack has a fundamental limit. Accordingly, the cyber threat intelligence analysis technology is drawing attention in analyzing the attacker group, interpreting the attack trend, and obtaining decision making information by collecting a large quantity of cyber-attack information and performing relation analysis. In this study, we proposed relation analysis factors and developed a system for establishing cyber threat intelligence, based on malicious code as a key means of cyber-attacks. As a result of collecting more than 36 million kinds of infringement information and conducting relation analysis, various implications that cannot be obtained by simple searches were derived. We expect actionable intelligence to be established in the true sense of the word if relation analysis logic is developed later.

Recognition of Car License Plates Using Fuzzy Clustering Algorithm

  • Cho, Jae-Hyun;Lee, Jong-Hee
    • Journal of information and communication convergence engineering
    • /
    • v.6 no.4
    • /
    • pp.444-447
    • /
    • 2008
  • In this paper, we proposed the recognition system of car license plates to mitigate traffic problems. The processing sequence of the proposed algorithm is as follows. At first, a license plate segment is extracted from an acquired car image using morphological features and color information, and noises are eliminated from the extracted license plate segment using line scan algorithm and Grassfire algorithm, and then individual codes are extracted from the license plate segment using edge tracking algorithm. Finally the extracted individual codes are recognized by an FCM algorithm. In order to evaluate performance of segment extraction and code recognition of the proposed method, we used 100 car images for experiment. In the results, we could verify the proposed method is more effective and recognition performance is improved in comparison with conventional car license plate recognition methods.

Facture Simulation using Molecular Dynamics on a PC Cluster (PC 클러스터 상에서 분자동역학을 이용한 파괴 모사)

  • Choi, Deok-Kee;Ryu, Han-Kyu
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.252-257
    • /
    • 2001
  • With the help of newly arrived technology such as PC clustering, molecular dynamics (MD) seems to be promising for large-scale materials simulations. A cost-effective cluster is set up using commodity PCs connected over Ethernet with fast switching devices and free software Linux. Executing MD simulations in the parallel sessions makes it possible to carry out large-scale materials simulations at acceptable computation time and costs. In this study, the MD computer code for fracture simulation is modified to comply with MPI (Message Passing Interface) specification, and runs on the PC cluster in parallel mode flawlessly. It is noted that PC clusters can provide a rather inexpensive high-performance computing environment comparing to supercomputers, if properly arranged.

  • PDF

Clustering Method based on Structure Code and HMM for Huge Class On-line Handwritten Chinese Character Recognition (대용량 온라인 필기 한자 인식을 위한 구조 코드 및 HMM 기반의 클러스터링 방법)

  • Kim, Kwang-Seob;Ha, Jin-Young
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2008.06c
    • /
    • pp.472-477
    • /
    • 2008
  • 본 논문에서는 은닉 마르코프 모델(HMM)을 기반한 대용량의 필기 한자 인식의 문제점인 시스템 리소스의 한계와 인식에 소요되는 많은 시간을 단축하기 위해 구조코드와 HMM에 최적화 된 클러스터링 알고리즘을 제안한다. 제안하는 클러스터링 알고리즘의 기본 개념은 훈련된 HMM를 대상으로 하고, HMM의 파라미터 수가 동일한 클래스에 대해서 클러스터를 구성하는 것이다. 또한 인식에 소요되는 시간을 줄이기 위해 2단계 클러스터모델 구조를 사용한다. 총 98,639 종류의 일본 한자를 대상으로 한 실험에서 평균 0.92 sec/char 인식 속도와 30순위 후보인식률 96.03%를 보임으로서 대용량 필기 한자 인식을 위한 좋은 방안이 될 것이라 기대한다.

  • PDF

Invariant Iris Code extraction for generating cryptographic key based on Fuzzy Vault (퍼지볼트 기반의 암호 키 생성을 위한 불변 홍채코드 추출)

  • Lee, Youn-Joo;Park, Kang-Ryoung;Kim, Jai-Hie
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.321-322
    • /
    • 2006
  • In this paper, we propose a method that extracts invariant iris codes from user's iris pattern in order to apply these codes to a new cryptographic construct called fuzzy vault. The fuzzy vault, proposed by Juels and Sudan, has been used to manage cryptographic key safely by merging with biometrics. Generally, iris data has intra-variation of iris pattern according to sensed environmental changes, but cryptography requires correctness. Therefore, to combine iris data and fuzzy vault, we have to extract an invariant iris feature from iris pattern. In this paper, we obtain invariant iris codes by clustering iris features extracted by independent component analysis(ICA) transform. From experimental results, we proved that the iris codes extracted by our method are invariant to sensed environmental changes and can be used in fuzzy vault.

  • PDF