• 제목/요약/키워드: Code Angle

검색결과 467건 처리시간 0.026초

A Numerical Study on the Improvement of Performance for the 2 Vane Pump Impeller (2 Vane 펌프 임펠러의 성능 개선에 관한 수치해석적 연구)

  • KIM, SUNG;MA, SANG-BUM;CHOI, YOUNG-SEOK;KIM, JIN-HYUK
    • Journal of Hydrogen and New Energy
    • /
    • 제31권3호
    • /
    • pp.293-301
    • /
    • 2020
  • This paper describes a numerical study on the improvement of performance of the 2 vane pump impellers. The design of these impellers was optimized using a commercial computation fluid dynamics code and design of experiments. Geometric design variables were defined by the impeller blade angle distribution. The objective functions were defined as the total head, total efficiency and solid material size of the impellers. The importance of the geometric design variables was analyzed using 2k factorial designs. The interaction between the total head, total efficiency and solid material size, according to the impeller blade angle distribution, is discussed by analyzing the 2k factorial design results.

Study on Design Factor and Design-code Development for Plate Type Heat Exchangers (판형 열교환기의 주요 설계인자와 설계프로그램 개발에 관한 고찰)

  • Ko, Jea-Hyun;Park, Kweon-Ha;Song, Young-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제36권8호
    • /
    • pp.1003-1009
    • /
    • 2012
  • Heat exchanger has been widely used in the industry which needs energy transport, and the application of the plate type heat exchanger having high efficiency has been greatly increased. In this study main design parameters are analyzed and new equations are induced. The induced formulation was compared with a commercial program in order to design an optimal heat exchanger. The equations of heat transfer coefficient and pressure drop for Chevron angles are introduced as functions of Reynolds number. The program implemented the equations is tested with Chevron angle variation. The results show that the convective heat transfer coefficients take errors within 8% and the pressure drops have errors within 5% in the analysis conditions.

Flow and Heat Transfer Within a Rectangular Film Cooling Hole of Normal Injection Angle (수직분사각도를 갖는 직사각 막냉각홀 내부에서의 유동 및 열/물질전달 특성)

  • Hong, Sung-Kook;Lee, Dong-Ho;Kang, Seung-Goo;Cho, Hyung-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • 제28권4호
    • /
    • pp.456-466
    • /
    • 2004
  • An experimental study has been conducted to investigate the flow and heat/mass transfer characteristics within a rectangular film cooling hole of normal injection angle for various blowing ratios and Reynolds numbers. The results are compared with those for the square hole. The experiments have been performed using a naphthalene sublimation method and the flow field has been analyzed by numerical calculation using a commercial code (FLUENT). The heat/mass transfer around the hole entrance region is enhanced considerably due to the reattachment of separated flow and the vortices generated within the hole. At the hole exit region, the heat/mass transfer increases because the main flow induces a secondary vortex. It is observed that the overall heat/mass transfer characteristics are similar to those for the square hole. However, the different heat/mass transfer patterns come out due to increased aspect ratio. Unlike the square hole, the heat/mass transfer on the trailing edge side of hole entrance region has two peak regions due to split flow reattachment, and heat/mass transfer on the hole exit region is less sensitive to the blowing ratios than the square hole.

The wave stability of the nonparallel natural convection flows adjacent to an inclined isothermal surface submerged in water at $4degC$ ($4degC$ 물에 잠겨있는 경사진 등온 벽주위 비평행 자연대류의 파형 안정성)

  • 황영규;장명륜
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • 제15권2호
    • /
    • pp.644-653
    • /
    • 1991
  • A wave instability problem is formulated for natural convection flows adjacent to a inclined isothermal surface in pure water near the density extremum. It accounts for the nonparallelism of the basic flow and temperature fields. Numerical solutions of the hydrodynamic stability equations constitute a two-point boundary value problem which are accurately solved using a computer code COLSYS. Neutral stability results for Prandtl number of 11.6 are obtained for various angles of inclination of a surface in the range from-10 to 30 deg. The neutral stability curves are systematically shifted toward modified Grashof number G=0 as one proceeds from downward-facing inclined plate(.gamma.<0.deg.) to upward-facing inclined plate (.gamma.>0.deg.). Namely, an increase in the positive angle of inclination always cause the flows to be significantly more unstable. The present results are compared with the results for the parallel flow model. The nonparallel flow model has, in general, a higher critical Grashof number than does the parallel flow model. But the neutral stability curves retain their characteristic shapes.

Effects of Acceleration and Deceleration Parameters on the Machining Error for Large Area Laser Processing (대면적 레이저 가공을 위한 가감속 파라미터가 가공오차에 미치는 영향)

  • Lee, Jae Hoon;Yoon, Kwang Ho;Kim, Kyung Han
    • Journal of the Korean Society for Precision Engineering
    • /
    • 제31권8호
    • /
    • pp.721-728
    • /
    • 2014
  • In this paper, it is proposed a method of optimizing path parameters for large-area laser processing. On-the-fly system is necessary for large-area laser processing of uniform quality. It is developed a MOTF(Marking On-The-Fly) board for synchronizing the stage and scanner. And it is introduced the change of the error due to the change of parameters and algorithm for large-area laser processing. This algorithm automatically generates stage path and a velocity profile using acceleration and deceleration parameters. Since this method doesn't use a G-code, even if without expert knowledge, it has an advantage that can be accessed easily. Angle of one of the square of $350{\times}350mm$ was changed from $50^{\circ}$ to $80^{\circ}$ and analyzed the error corresponding to the value of Ta. It is calculated the value of Ta of the best with a precision of 20um through measurement of accuracy according to the Ta of each angle near the edge.

Determination of Laminar Burning Velocity in Premixed Oxy-Methane Flames (메탄-산소 층류화염전파속도 측정)

  • Oh, Jeong-Seog;Noh, Dong-Soon;Lee, Eun-Gyeong;Hong, Seong-Kook
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 한국추진공학회 2011년도 제37회 추계학술대회논문집
    • /
    • pp.258-262
    • /
    • 2011
  • The laminar burning velocity in premixed Oxy-CH4 flames was studied in a lab-scale Bunsen burner. $CH^*$ chemiluminescence method and Schliren photography were used. Experimental results were compared with numerical prediction which was calculated with a CHEMKIN 3.7 package with a PREMIX code. Global equivalence ratio of oxy-CH4 mixture was varied from 0.5 to 2.0 in a laminar flow region. The laminar burning velocity was measured as 3.1 m/s for Schlieren photograph and 2.9 m/s for $CH^*$ chemiluminescence technique (angle method).

  • PDF

The effect of micro pore on the characteristics of crack tip plastic zone in concrete

  • Haeri, Hadi;Sarfarazi, V.
    • Computers and Concrete
    • /
    • 제17권1호
    • /
    • pp.107-127
    • /
    • 2016
  • Concrete is a heterogeneous material containing many weaknesses such as micro-cracks, pores and grain boundaries. The crack growth mechanism and failure behavior of concrete structures depend on the plastic deformation created by these weaknesses. In this article the non-linear finite element method is used to analyze the effect of presence of micro pore near a crack tip on both of the characteristics of crack tip plastic zone (its shape and size) and crack growth properties (such as crack growth length and crack initiation angle) under pure shear loading. The FE Code Franc2D/L is used to carry out these objectives. The effects of the crack-pore configurations and the spacing between micro pore and pre-excising crack tip on the characteristics of crack tip plastic zone and crack growth properties is highlighted. Based on the obtained results, the relative distance between the crack tip and the micro pore affects in very significant way the shape and the size of the crack tip plastic zone. Furthermore, crack growth length and crack initiation angle are mostly influenced by size and shape of plastic zone ahead of crack tip. Also the effects of pore decrease on the crack tip by variation of pore situation from linear to perpendicular configuration. The critical position for a micro pore is in front of the crack tip.

Heat and Flow Analysis in the HVAC Impeller for Mid-Size Car (중형차 HVAC 임펠러 내의 열유동 해석)

  • Lee, Dong-Ryul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • 제13권4호
    • /
    • pp.1503-1510
    • /
    • 2012
  • In this research, various cases of centrifugal impeller for HVAC system have been numerically analyzed by changing center angle of blades and length of outlet. Commercial CFD code, FLUENT has been used to calculate velocity, pressure, turbulence intensity, and temperature that can lead numerous results. Regardless of warming up, when the heater power level was increased, the temperature inside surrounding impeller also increased due to flowing outer air, but the temperature decreased because of flowing inner air. Consequently, the variation of central angle of blades and length of outlet led difference of velocity and flow rate which can reduce $CO_2$ in gas emission.

Forming Characteristics of the Forward and Backward Tube Extrusion Using Pipe (중공축 소재를 이용한 전후방 복합압출의 성형 특성)

  • Kim S. H.;Lee H. Y.
    • Transactions of Materials Processing
    • /
    • 제14권9호통권81호
    • /
    • pp.772-778
    • /
    • 2005
  • This paper is concerned with the analysis of material flow characteristics of combined tube extrusion using pipe. The analysis in this paper concentrated on the evaluation of the design parameters for deformation patterns of tube forming, load characteristics, extruded length, and die pressure. The design factors such as punch nose radius, die corner radius, friction factor, and punch face angle are involved in the simulation. The combined tube extrusion is analyzed by using a commercial finite element code. This simulation makes use of pipe material and punch geometry on the basis of punch geometry recommended by International Cold Forging Group. Deformation patterns and its characteristics in combined forward and backward tube extrusion process were analyzed for forming loads with primary parameters, which are various punch nose radius relative to backward tube thickness. The results from the simulation show the flow modes of pipe workpiece and the die pressure at the contact surface between pipe workpiece and punch. The specific backward tube thickness and punch nose radius have an effect on extruded length in combined extrusion. The combined one step forward and backward extrusion is compared with the two step extrusion fer forming load and die pressure.

Morphological Feature Extraction of Microorganisms Using Image Processing

  • Kim Hak-Kyeong;Jeong Nam-Su;Kim Sang-Bong;Lee Myung-Suk
    • Fisheries and Aquatic Sciences
    • /
    • 제4권1호
    • /
    • pp.1-9
    • /
    • 2001
  • This paper describes a procedure extracting feature vector of a target cell more precisely in the case of identifying specified cell. The classification of object type is based on feature vector such as area, complexity, centroid, rotation angle, effective diameter, perimeter, width and height of the object So, the feature vector plays very important role in classifying objects. Because the feature vectors is affected by noises and holes, it is necessary to remove noises contaminated in original image to get feature vector extraction exactly. In this paper, we propose the following method to do to get feature vector extraction exactly. First, by Otsu's optimal threshold selection method and morphological filters such as cleaning, filling and opening filters, we separate objects from background an get rid of isolated particles. After the labeling step by 4-adjacent neighborhood, the labeled image is filtered by the area filter. From this area-filtered image, feature vector such as area, complexity, centroid, rotation angle, effective diameter, the perimeter based on chain code and the width and height based on rotation matrix are extracted. To prove the effectiveness, the proposed method is applied for yeast Zygosaccharomyces rouxn. It is also shown that the experimental results from the proposed method is more efficient in measuring feature vectors than from only Otsu's optimal threshold detection method.

  • PDF