• Title/Summary/Keyword: CodY

Search Result 2,894, Processing Time 0.028 seconds

Improved Organic Removal Efficiency in Two-phase Anaerobic Reactor with Submerged Microfiltration System (침지형 정밀여과시스템을 결합한 이상 혐기성 시스템에 의한 유기물 제거율의 향상)

  • Jung, Jin-Young;Chung, Yun-Chul;Lee, Sang-Min
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.4
    • /
    • pp.629-637
    • /
    • 2000
  • A two-phase anaerobic reactor with a submerged microfiltration system was tested for its ability to produce methane energy from organic wastewater. A membrane separation system with periodic backwashing with compressed air was submerged in the acidogenic reactor. The cartridge type of microfiltration (MF) membrane with pore size of $0.5{\mu}m$ (mixed esters of cellulose) was tested. An AUBF (Anaerobic Upflow Sludge Bed Filter: 1/2 packed with plastic media) was used for the methanogenic reactor. Soluble starch was used as a substrate. The COD removal was investigated for various organic loading with synthetic wastewater of 5,000 mg starch/L. When the hydraulic retention time (HRT) of the acidogenic reactor was changed from 10 to 4.5 days, the organic loading rate (OLR) varied from 0.5 to $1.0kg\;COD/m^3-day$. When the HRT of the methanogenic reactor was changed from 2.8 to 0.5 days, the OLR varied from 0.8 to $5.8kg\;COD/m^3-day$. The acid conversion rate of the acidogenic reactor was over 80% in the 4~5 days of HRT. The overall COD removal efficiency of the methanogenic reactor showed over 95% (effluent COD was below 300 mg/L) under the highly fluctuating organic loading condition. A two-phase anaerobic reactor showed an excellent acid conversion rate from organic wastewater due to the higher biomass concentration than the conventional system. A methanogenic reactor combined with sludge bed and filter, showed an efficient COD and SS removal.

  • PDF

Chemical Oxygen Demand (COD) Model for the Assessment of Water Quality in the Han River, Korea (한강수질 평가를 위한 COD (화학적 산소 요구량) 모델 평가)

  • Kim, Jae Hyoun;Jo, Jinnam
    • Journal of Environmental Health Sciences
    • /
    • v.42 no.4
    • /
    • pp.280-292
    • /
    • 2016
  • Objectives: The objective of this study was to build COD regression models for the Han River and evaluate water quality. Methods: Water quality data sets for the dry season (as of January) during a four-year period (2012-2015) were collected from the database of the Han River automatic water quality monitoring stations. Statistical techniques, including combined genetic algorithm-multiple linear regression (GA-MLR) were used to build five-descriptor COD models. Multivariate statistical techniques such as principal component analysis (PCA) and cluster analysis (CA) are useful tools for extracting meaningful information. Results: The $r^2$ of the best COD models provided significant high values (> 0.8) between 2012 and 2015. Total organic carbon (TOC) was a surrogate indicator for COD (as COD/TOC) with high reliability ($r^2=0.63$ in 2012, $r^2=0.75$ for 2013, $r^2=0.79$ for 2014 and $r^2=0.85$ for 2015). The ratios of COD/TOC were calculated as 2.08 in 2012, 1.79 in 2013, 1.52 and 1.45 in 2015, indicating that biodegradability in the water body of the Han River was being sustained, thereby further improving water quality. The BOD/COD ratio supported these findings. The cluster analysis revealed higher annual levels of microorganisms and phosphorous at stations along the Hangang-Seoul and Hantangang areas. Nevertheless, the overall water quality over the last four years showed an observable trend toward continuous improvement. These findings also suggest that non-point pollution control strategies should consider the influence of upstreams and downstreams to protect water quality in the Han River. Conclusion: This data analysis procedure provided an efficient and comprehensive tool to interpret complex water quality data matrices. Results from a trend analysis provided much important information about sources and parameters for Han River water quality management.

무기담채를 이용한 폐수처리

  • Cha, Wol-Seok;Gwon, Gyu-Hyeok;Choe, Hyeong-Il;Jeong, Gyeong-Hun;Lee, Dong-Byeong;Jeong, Gil-Rok
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.04a
    • /
    • pp.343-347
    • /
    • 2003
  • Power of loess ball on nitrogen and phosphorous removal in wastewater treatment were investigated. flow line A ( anaerobic${\rightarrow}$oxic${\rightarrow}$anoxic(organic source methanol)${\rightarrow}$p-absorption) showed the results of T-P 0.5, T-N 1.0, and COD 10ppm bellow, and flow line B ( oxic${\rightarrow}$anoxic, organic source: methanol${\rightarrow}$p-absorption) showed the results of T-P 0.3, T-N 5.0, and COD 15 ppm bellow. flow line C ( anaerobic${\rightarrow}$oxic${\rightarrow}$anoxic, organic source: wastewater ${\rightarrow}$ p-absorption) showed the results of T-P 0.6, T-N 10, and COD 15 ppm bellow, and flow line D ( oxic${\rightarrow}$anoxic, organic source: methanol${\rightarrow}$p-absorption) showed the results of T-P 1, T-N 8m, and COD 20 ppm bellow. So the results of these experiments showed the probability of loess ball in wastewater treatment.

  • PDF

SS and COD Runoff from a Rice Field Watershed during Storm Events in the Growing and Non-growing Seasons (강우시 영농기와 비영농기의 광역논에서의 부유물질 (SS)과 COD의 유출특성)

  • Lee, Jeong Beom;Lee, Jae Yong;Kim, Jin Soo
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.2
    • /
    • pp.91-99
    • /
    • 2017
  • The objective of this research was to investigate runoff characteristics of suspended solid (SS) and chemical oxygen demand (COD) from a paddy field watershed during storm events in the growing and non-growing seasons. Average of event mean concentration (EMC) of pollutants were 56.9 mg/L for SS and 23.9 mg/L for COD in the non-growing season and 50.3 mg/L for SS and 11.9 mg/L for COD in the growing season. The average EMC of SS in the study area was much lower than that in the uplands irrespective of cultivation, suggesting that paddy fields control soil erosion. This may be because flooding and wet soil in the growing season, and rice straw residue and stubble on the topsoil in the non-growing season reduce soil erosion. The changing tillage practice from fall tillage to spring tillage avoids soil erosion due to shortening of the tilled fallow period. However, the average EMC of COD in the non-growing season was about twice as much that in the growing season likely due to the runoff of organics like rice straw residues. The relationship between SS and COD loads and stormwater runoff volume was expressed by power function. The exponent for SS was higher than that for COD, suggesting that SS load increased with stormflow runoff more than COD load did. The mean SS and COD loads per storm during the non-growing season were much lower than those in the growing season, and therefore non-point source pollution in the growing season should be managed well.

ENVIRONMENT IN THE OYSTER FARM AREA -Superficial Mud Characteristics Near Chungmu- (굴 양식장의 환경에 관한 연구 충무부근 양식장의 저질에 관하여)

  • CHO Chang Hwan;KIM Yong Sool
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.11 no.4
    • /
    • pp.243-247
    • /
    • 1978
  • COD and sulphide contents in the superficial mud in three oyster farms, one near Gajo-do in Chinhae Bay, the second near Eup-do in Koseong Bay and the third near Eogu in Keoje Bay, around the Chungmu area have been monthly determined for seven months from May through November in 1978. Bottom water was also checked for chlorophyll-a, dissolved oxygen, COD and sulphide. In general, large amounts of COD and sulphide in the superficial mud were found in the summer season, COD was 38.1 mg/g dry mud in the farm near Gajo-do, 32.3 mg/g near Eup-do and 25.1 mg/g in Eogu farm and sulphide was 0.313 mg/g dry mud, 0.517 mg/g and 0.132 mg/g respectively. COD and sulphide contents in the farms near Gajo-do and Eup-do were a little over the upper level of the eutrophic range, that is, 30 mg/g dry mud in COD and 0.3 mg/g dry mud in sulphide. It shows that the above two oyster farms were already eutrophicated. However, among three oyster farms no clear difference in bottom water was found.

  • PDF

Operation of UASB Reactor for Treatment of Dairy Wastewaters (유가공폐수 처리를 위한 UASB 반응조 운전)

  • Bae, Byung-Uk
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.3 no.2
    • /
    • pp.37-45
    • /
    • 1995
  • The performance and the operational problems of UASB(Upflow Anaerobic Sludge Blanket) reactor for treatment of dairy wastewaters were investigated. Synthetic milk wastewater was successfully treated up to the loading rate of 3.9kg $COD/m^3.day$, with a specific gas production rate of 1. 23 I/I. day and a COD removal efficiency of over 90%. However, the sludge rising was observed at the loading rate of 2.1kg $COD/m^3.day$, due probably to the formation of scum layer at the surface of settling compartment. The BMP(biochemical methane potential) of raw milk wastewater and ice cream wastewater, measured by using SBT(serum bottle test), were 0.135 and 0.66ml $CH_4/mg\;COD_{added}$, respectively. The sludge activity increased more than 8 times from 0.159g $COD-CH_4/g$ VSS. d during 90 days of operation.

  • PDF

Index of Organic Matter in Stream and Lake (하천·호소의 유기물 지표 평가)

  • Yu, Soon Ju;Hwang, Jong Yeon;Yoon, Young Sam;Cheon, Se Uk;Han, Eui Jung
    • Journal of Environmental Impact Assessment
    • /
    • v.8 no.1
    • /
    • pp.81-92
    • /
    • 1999
  • This study discussed the appropriateness of organic matter indexes such as biochemical oxygen demand(BOD) and chemical oxygen demand with potassium permanganate($COD_{Mn}$) in water quality environmental standard of streams and lakes and the applicability of the items to water quality environmental standard to add or substitute COD with potassium dichromate ($COD_{Cr}$) and total organic carbon(TOC) being used as index of organic matter. And indexes of organic matter content and organic carbon concentration were distinguished between dissolved and particulate component in water sample to estimate their effect on pollutants loading in lake and stream. The ratio of $COD_{Cr}$/BOD was 5.1 under BOD concentration 3mg/L in river water quality environmental standard II, and 2.67 above it. This ratio was diminished to 2.04 when BOD concentration was more than 8mg/L, in river quality environmental standard IV. Also the ratio of $COD_{Mn}$/BOD showed 2.16 under 3mg/L(BOD), and 1.1 above it. This ratio is also diminished to 0.84 over 8mg/L(BOD). Accordingly, we should apply this ratio depending on the concentration level to add and change organic matter index of water quality environmental standard newly. The ratio $COD_{Cr}/COD_{Mn}$ both in lake and stream shows 2.37(r=0.986, p<0.001). But the ratios showed range of 2.34~2.50, which is no much difference of this ratio according to $COD_{Mn}$ concentration.

  • PDF

Mixing effect on organic removal efficiency in treating low-strength wastewater using a modified anaerobic filter reactor (변형 혐기성 여상 반응조에서 교반강도가 유기물 제거효율에 미치는 영향)

  • 정병곤;이헌모
    • Journal of Environmental Science International
    • /
    • v.5 no.4
    • /
    • pp.513-524
    • /
    • 1996
  • Laboratory investigation was conducted to evaluat the mixing effects on organic removal efficiency to treat low-strength synthetic wastewater using modified anaerobic - filter reactor combining anaerobic filter and upflow anaerobic sludge blanket. Using the modified process the low-strength wastewater like municipal sewage could be treated with 85% T-COD removal efficiency at hydraulic retention time of 6 hours. At the constant organic loading of 0.5 kg COD/m 3-day, the organic removal efficiency and effluent COD concentration are increased as influent COD concentration increased from 125 mg/l to 500 mg/l. Mixing effects on organic removal efficiency are evident and optimum mixing speed is found as 50RPM. Placing the granular sludge and media on which slime layer was pre-formed into the reactor seemed to be very effective In achieving short start-up period. Therefore, the steady state was achived after 4 weeks and 1 week based on T-COD and S-COD, respectively.

  • PDF

Ammonia Effects on Anaerobic Digestion of Swine Wastewaters (양돈폐수의 혐기성 소화에 대한 암모니아의 영향)

  • Kim, Jong-Soo
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.10 no.1
    • /
    • pp.102-108
    • /
    • 2002
  • The effects of ammonia on mesophilic anaerobic digestion were investigated by operating lab-scale two-stage ASBF reactors using swine wastewaters as influent without and with ammonia removal at HRT of 1-2 days and OLR of $2.2{\sim}9.6kg-COD/m^3{\cdot}d$ for 250 days. The COD removal efficiency and biogas generation of two-stage ASBF reactors was decreased by increasing influent ammonia concentrations to 1,580 mg(T-N)/L with increasing OLR to $6.3kg-COD/m^3{\cdot}d$, while those were increased by maintaining influent ammonia concentrations below 340 mg(T-N)/L by MAP precipitation with increasing OLR to $9.6kg-COD/m^3{\cdot}d$. Initial inhibirion of ammonia on anaerobic processes was observed at a concentration of 760 mg(T-N)/L and the COD removal efficiency and biogas generation dropped to 1/2 at ammonia concentration ranges of 1,540~1,870 mg(T-N)/L. It is essential to remove ammonia in swine wastewaters to an initial inhibition level before anaerobic processes for the effective removal of COD.

  • PDF

COD Removal of Rhodamine B from Aqueous Solution by Electrochemical Treatment

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.21 no.6
    • /
    • pp.655-659
    • /
    • 2012
  • This study elucidates the COD removal of dye (Rhodamine B) through electrochemical reaction. Effects of current density (7.2 to 43.3 $mA/cm^2$), electrolyte type (NaCl, KCl, $Na_2SO_4$, HCl), electrolyte concentration (0.5 to 2.0 g/L), air flow rate (0 to 4 L/min) and pH (3 to 11) on the COD removal of Rhodamine B were investigated. The observed results showed that the increase of pH decrease the COD removal efficiency. Whereas, the increase of current density;NaCl concentration and air flow rate caused the increase of the COD removal of Rhodamine B.