• 제목/요약/키워드: Coconut shell charcoal

검색결과 9건 처리시간 0.022초

공기중 염화비닐단량체 포집시 온도가 파과현상에 미치는 영향 (The Effect of Temperature on the Breakthrough of Charcoal Tube During Vinyl Chloride Monomer Sampling)

  • 박윤정;이상회;김치년;원종욱;노재훈
    • 한국산업보건학회지
    • /
    • 제8권1호
    • /
    • pp.115-123
    • /
    • 1998
  • Vinyl chloride monomer exists as gas phase at normal temperature and reacts with oxygen and strong oxidant in the air to form oxidized materials. Because of being easily synthesized, it is used as a main source at the synthetic reaction process of PVC synthesis factories. Ministry of Labor regulates its usage as a carcinogen and its exposure level as 1 ppm. But the amount of VCM production in PVC and VCM production process hasn't been exactly estimated. In addition, facilities of this factory are located in outdoor. Therefore, this study was designed to investigate effects of temperature on breakthrough of charcoal tube at a fixed concentration and temperature during VCM sampling based on NIOSH and OSHA methods which were used as methods of occupational environment measuring and analysis. During the sampling of VCM, methods of OSHA and NIOSH require flow rate of 0.05 lpm and sampling volume of $3{\ell}$, $5{\ell}$ respectively, at this time carbon molecular sieve tube and coconut shell charcoal tube are used to observe the breakthrough along with concentration and temperature. As a result, significant difference between average adsorbed amounts of OSHA methods but that of NIOSH methods cannot be found. NIOSH method is likely to be effected by high temperature and normal temperature in high concentration. Breakthrough is not found in the method of OSHA at different conditions of temperature and concentration. As the result of this study we could verify that breakthrough occurred in the process of sampling VCM with NIOSH methods. Therefor in summer time, breakthrough should be considered and research on the breakthrough volume should be done. It is considered the research about the specificity of the coconut shell charcoal and carbon molecular sieve sorbent should be done when sampling VCM in comming days.

  • PDF

Initial Ignition Time and Calorific Value Enhancement of Briquette with Added Pine Resin

  • Gustan PARI;Lisna EFIYANTI;Saptadi DARMAWAN;Nur Adi SAPUTRA;Djeni HENDRA;Joseph ADAM;Alfred INKRIWANG;Rachman EFFENDI
    • Journal of the Korean Wood Science and Technology
    • /
    • 제51권3호
    • /
    • pp.207-221
    • /
    • 2023
  • The increasing demand for clean energy requires considerable effort to find alternative energy sources, such as briquettes. This research aims to develop a charcoal briquette with added pine resin (API) that has excellent combustion speed and distinctive aroma. Briquettes are composed of charcoal, pine resin (concentration: 0%-30%), and starch (up to 7%). They are produced in several stages, including coconut shell pyrolysis in conventional combustion, to obtain charcoal for the briquette precursor. Briquette compaction is conducted by mixing and densifying the charcoal, pine resin, and starch using a hydraulic press for 3 min. The hydraulic press has a total surface area and diameter of 57.7 cm2 and 3.5 cm, respectively. The briquettes are dried at different temperatures, reaching 70℃ for 24 h. The study results show that the briquettes have a thickness and diameter of up to 2 and 3.5 cm, respectively; moisture of 2.18%-2.62%; ash of 11.61%-13.98%; volatile matter of 27.15%-51.74%; and fixed carbon content of 40.24%-59.46%. The compressive strength of the briquettes is 186-540 kg/cm2. Their calorific value is 5,338-6,120 kcal/kg, combusting at a high speed of 0.15-0.40 s. The methoxy naphthalene, phenol, benzopyrrole, and lauryl alcohol; ocimene, valencene, and cembrene are found in the API. The API briquette has several chemical compounds, such as musk ambrette, ocimene, sabinene, limonene, 1-(p-cumenyl) adamantane, butane, and propanal, which improve aroma, drug application, and fuel production. Accordingly, API briquettes have considerable potential as an alternative energy source and a health improvement product.

이.취미물질(IBMP, IPMP)의 흡착제거 (Adsorption Removal of Odor Compounds (IBMP, IPMP))

  • 김은호;손희정;김영웅
    • 환경위생공학
    • /
    • 제14권2호
    • /
    • pp.18-24
    • /
    • 1999
  • The purpose of this study was carried out to estimate removal possibility of IBMP and IPMP causing odor in raw water. As a result of Freundlich isotherm. IBMP was superior to IPMP in adsorptive capacity. Adsorptive capacities of activated carbon were found to be in order of Lignite, Coconut shell, and Charcoal. These were well fitted with Freundlich isotherm. According to adsorption breakthrough tests for Lignite GAC, breakthrough time of IPMP and IBMP were 5.7hr and 5.5hr, respectively. Because adsorptive capacities of target material were very different with pore size distribution, it seemed that Lignite and Coconut shell based activated carbons were recommended in order to remove door compounds.

  • PDF

산란계에서 활성야자탄의 첨가가 계란의 품질 및 혈장 콜레스테롤 함량에 미치는 영향 (Influence of Dietary Activated Coconut Charcoal on Egg Quality and Plasma Cholesterol Level in Laying Hens)

  • 민병준;김인호;이원백;홍종욱;김지훈;권오석;이상환
    • 한국가금학회지
    • /
    • 제29권1호
    • /
    • pp.13-18
    • /
    • 2002
  • 본 연구의 목적은 산란계 사료에 활성야자탄의 첨가가 계란의 품질 및 혈장 콜레스테롤에 미치는 영향을 조사하기 위하여 실시하였다. 사양시험은 47주령 ISA Brown 산란계 144수를 공시하였으며, 처리구로는 옥수수-대두박 위주의 기초사료, 기초사료에 활성야자탄을 0.5%, 1.Oclo 그리고 1.5% 첨가한 구로 4개 처리로 구성되었다. 총 28일간의 사양 시험 기간동안 활성야자탄의 첨가수준이 증가함에 따라 산란율은 유의적으로 증가했다. 난중은 활성야자탄을 급여함에 따라 유의적으로 감소했으며, 난각강도에 있어서는 활성야자탄을 첨가함에 따라 낮아지는 경향을 보였으나 유의적인 차이는 없었다. 또한 난각두께는 둔단부, 예단부 그리고 중앙부에서 활성야자탄을 첨가함에 따라 유의적으로 감소하였다. 난황색에 있어서는 활성야자탄을 첨가함에 따라 증가하는 경향을 나타내었으나 처리구간에 유의적인 차이는 보이지 않았다. 난황계수는 활성야자탄을 첨가한 처리구에서 유의적으로 증가하였다. 혈장내 총 콜레스테롤 함량과 HDL 및 LDL+YLDL콜레스테롤 함량은 처리구에서 감소하는 경향을 보였으나 유의적인 차이는 없었다. 결론적으로 산란계 사료내 활성야자탄의 첨가는 산란을 및 난황계수를 향상시킬 수 있을 것으로 사료된다.

Assessing the Formation of Polycyclic Aromatic Hydrocarbons in Grilled Beef Steak and Beef Patty with Different Charcoals by the Quick, Easy, Cheap, Effective, Rugged, and Safe (QuEChERS) Method with Gas Chromatography-Mass Spectrometry

  • Ali Samet Babaoglu
    • 한국축산식품학회지
    • /
    • 제43권5호
    • /
    • pp.826-839
    • /
    • 2023
  • This study investigated the effects of different charcoals on the occurrence of 16 polycyclic aromatic hydrocarbons (PAHs) in grilled beef steaks and beef patties. Seven different charcoals were used as follows: from oak wood (C1), from orange wood (C2), from Valonia oak wood (C3), from Marabu wood (C4), extruded charcoal from beech wood (C5), from coconut shells (C6), and from hazelnut shells (C7). The grilling times for each charcoal type were 6 min for the beef patties and 7 min for the beef steaks, until the internal temperature reached at least 74℃. The total concentration of 16 PAHs (PAH16) in beef steaks grilled with C1 (35.75 ㎍/kg) and C7 (36.39 ㎍/kg) was higher than that of C3 (23.80 ㎍/kg) and C6 (24.48 ㎍/kg; p<0.05). The highest amounts of PAH16 (216.40 ㎍/kg) were determined in the beef patty samples grilled using C5 (p<0.05). The summation of benzo[a]anthracene, chrysene, benzo[b]fluoranthene and benzo[a]pyrene, referred to as PAH4, was not detected in any of the beef steaks, whereas it was determined in the beef patties grilled with C2 (7.72 ㎍/kg) and C5 (22.95 ㎍/kg; p<0.05). The PAH16 concentrations of the beef patty samples in each charcoal group were significantly higher compared to the beef steaks (p<0.05). To avoid the formation of high PAH levels, the use of extruded charcoal and hazelnut shell charcoal should therefore be avoided when charcoal grilling beef steaks and beef patties, and low-fat meat products should be preferred.

이차전지 음극용 화학적 활성화법으로 제조된 활성탄의 전기화학적 특성 (Electrochemical characteristics of active carbon prepared by chemical activation for anode of lithium ion battery)

  • 이호용;김태영;이종대
    • 한국응용과학기술학회지
    • /
    • 제32권3호
    • /
    • pp.480-487
    • /
    • 2015
  • In this study, several kinds of active carbons with high specific surface area and micro pore structure were prepared from the coconut shell charcoal using chemical activation method. The physical property of prepared active carbon was investigated by experimental variables such as activating chemical agents to char coal ratio, flow rate of inert gas and temperature. It was shown that chemical activation with KOH and NaOH was successfully able to make active carbons with high surface area of $1900{\sim}2500m^2/g$ and mean pore size of 1.85~2.32 nm. The coin cell using water-based binder in the electrolyte of LiPF6 dissolved in mixed organic solvents (EC:DMC:EMC=1:1:1 vol%) showed better capacity than that of oil-based binder. Also, it was found that the coin cell of water-based binder shows an improved cycling performance and coulombic efficiency.

GC/FID를 이용한 사슬형 카보네이트 3종의 측정·분석방법 (Sampling and Analytical Method for Linear Carbonates using GC/FID)

  • 장미연;이광용
    • 한국산업보건학회지
    • /
    • 제33권4호
    • /
    • pp.455-463
    • /
    • 2023
  • Objectives: The aim of this study was to develop an air sampling and analytical method for estimating worker exposure to linear carbonate solvents and to evaluate the method. Methods: The target substances were three linear carbonates: DMC, DEC, EMC. GC/FID was used for sample analysis. Laboratory experiments were conducted to determine desorption solvents and sample capacity, and to evaluate storage stability, accuracy, and precision. Results: Coconut Shell Charcoal (CSC, 100/50 mg) was used as the air sampling media, and a desorption solvent of 5% methanol/95% dichloromethane was selected. Recommended sampling capacities were 1~11 ℓ for DMC, 1~18 ℓ for DEC, and 1~24 ℓ for EMC. The stability of three linear carbonates was demonstrated over 30 days in a refrigerator (4℃). Detection limits were determined as follows: DMC 0.26 ㎍/sample, DEC 0.24 ㎍/sample, and EMC 0.25 ㎍/sample. The total coefficient of variation was calculated as DMC 0.064, DEC 0.079, and EMC 0.07. Conclusions: This sampling and analysis method is suitable for estimating personal exposure to linear carbonates in the workplace.

확산길이에 따른 수동식 유기용제 시료채취기의 시료채취성능에 관한 연구 (Sampling Efficiency of Organic Vapor Passive Samplers by Diffusive Length)

  • 이병규;장재길;정지연
    • 한국환경보건학회지
    • /
    • 제35권6호
    • /
    • pp.500-509
    • /
    • 2009
  • Passive samplers have been used for many years for the sampling of organic vapors in work environment atmospheres. Currently, all passive samplers used in domestic occupational monitoring are foreign products. This study was performed to evaluate variable parameters for the development of passive organic samplers, which include the geometry of the device and diffusive length for the sampler design. Four prototype diffusive lengths; A-1(4.5 mm), A-2(7.0 mm), A-3(9.5 mm), A-4(12.0 mm) were tested for adsorption performances to a chemical mixture (benzene, toluene, trichloroethylene, and n-hexane) according to the US-OSHA's evaluation protocol. A dynamic vapor exposure chamber developed and verified by related research was used for this study. The results of study are as follows. The results in terms of sampling rate and recommended sampling time test indicate that the most suitable model was A-3 (9.5 mm diffusive lengths on both sides) for passive sampler design in time weighted average (TWA) assessment. Sampling rates of this A-3 model were 45.8, 41.5, 41.4, and 40.3 ml/min for benzene, toluene, trichloroethylene, and n-hexane, respectively. The A-3 models were tested on reverse diffusion and conditions of low humidity air (35% RH) and low concentrations (0.2 times of TLV). These conditions had no affect on the diffusion capacity of samplers. In conclusion, the most suitable design parameters of passive sampler are: 1) Geometry and structure - 25 mm diameter and 490 $mm^2$ cross sectional area of diffusion face with cylindrical form of two-sided opposite diffusion direction; 2) Diffusive length - 9.5 mm in both faces; 3) Amount of adsorbent - 300 mg of coconut shell charcoal; 4) Wind screen - using nylon net filters (11 ${\mu}m$ pore size).

활성탄섬유를 이용한 확산포집기의 공기 중 유기용제 포집효율에 관한 연구 (The Sampling Efficiencies of Volatile Organic Compounds(VOCs) to the Diffusive Monitor with Activated Carbon Fiber)

  • 변상훈;박천재;오세민;이창하
    • 한국산업보건학회지
    • /
    • 제6권2호
    • /
    • pp.187-201
    • /
    • 1996
  • This study was to evaluate the efficiency of diffusive monitor using activated carbon fiber(ACF, KF-1500) in measuring airborne organic solvents. The following characteristics were identified and studied as critical to the performance of diffusive monitor; recovery, sampling rate, face velocity, reverse diffusion and storage stability. For the evaluation of the performance of this monitor, MIBK, PCE, toluene were used as organic solvents. In the sampling rate experiments, eight kinds of solvents (n-hexane, MEK, DIBK, MCF, TCE, CB, xylene, cumene) as well as the above solvents were used. The results were as follows: 1. The desorption efficiencies(DE's) of ACF diffusive monitor ranged from 83 % to 101 %. In contrast, those of coconut shell charcoal ranged from 78 % to 102 %. Especially, the DE's of ACF for the polar solvents such as MEK were superior to those of charcoal. 2. Experimental sampling rates on ACF were average 42ml/min(37-46ml/min) for 11 organic solvents at $24{\pm}2^{\circ}C$, $50{\pm}5%RH$. However ideal sampling rates(DA/L) were 33 % higher than experimental sampling rates. 3. The initial response(15~16 min) of the testing monitor was 2 times higher than the actual concentration determined by the reference methods at $24{\pm}2^{\circ}C$, $8{\pm}5%RH$ and $80{\pm}5%RH$. Within 1 hours, the curve reached a linear horizontal line at low humidity condition. But sampling efficiencies decreased with respect to time at high humidity condition. And sampling efficiencies were higher at high humidity condition than low humidity condition for MIBK. 4. At very low velocity (less than 0.02 m/sec), the concentration of ACF diffusive monitor were poorly estimated. But ACF diffusive monitor were not affected at higher velocity(0.2 m/sec-0.6 m/sec). 5. There was no significant reverse diffusion when the ACF monitors were exposed to clean air for 2 hours after being exposed for 2 hours at the level of 1 TLV. 6. There was no significant sample loss during 3 weeks of storage at room temperature and 5 weeks of storage at refrigeration.

  • PDF