• Title/Summary/Keyword: Coconut

Search Result 344, Processing Time 0.025 seconds

Characteristics of Bacterial Community for Biological Activated Carbon(BAC) by Culturable and Unculturable Methods. (배양적 및 비배양적 방법에 의한 생물활성탄 부착세균 군집 특성)

  • Park, Hong-Ki;Jung, Eun-Young;Jung, Mi-Eun;Jung, Jong-Moon;Ji, Ki-Won;Yu, Pyung-Jong
    • Journal of Life Science
    • /
    • v.17 no.9 s.89
    • /
    • pp.1284-1289
    • /
    • 2007
  • The Biological Activated Carbon (BAC) process in the water treatments represents a kind of biofiltration process which capabilities of bacteria to remove organic matters are maximized. It enables to eliminate organic matters and effectively reduce microbial regrowth potentials. As attached bacteria employ natural organic matter as a substrate, they are significantly dependent on indigenous microorganisms. In this study, characteristics of bacterial community by culturable and unculturable Methods have been conducted in a pilot plant using SAC in water treatment process at the downstream of the Nakdong River. Based on the results, HPC and bacterial- production for coal-based activated carbon material were $1.20{\sim}56.2{\times}l0^7$ cfu/g and $1.2{\sim}3.7\;mgC/m^{3}h$, respectively, in the SAC process. The highest level of attached bacteria biomass and organic carbon removal efficiency was found in the coal-based activated carbon. The genera Pseudomonas, Flavobacterium, Alcaligenes, Acilzetobacter, and Spingomonas were identified for each activated carbon material. Pseudomonas vesicularis was the dominant species in the coconut- and coal-based materials, where as Pseudomonas cepacia was the dominant species in the wood-based material. The Scanning Electron Microscope (SEM) observation of the activated carbon surface also found the widespread distribution of rod form and coccus. The community of attached bacteria was investigated by performing Fluorescent in situ hybridization (FISH) analysis. a group was dominant in coal, wood and coccunt-based materials, ${\alpha},\;{\beta}\;and\;{\gamma}$ group ranged from 27.0 ${\sim}$ 43.0%, 7.1 ${\sim}$ 22.0%, 11.3 ${\sim}$ 28.6%, respectively. These results suggest that a group bacterial community appears to be regulated removal efficiency of organic material in water treatment process.

Effect of Aster scaber and Ixeris dentata on Contractility and Vasodilation of Cardiovascula and Endothelial Cell in Hyperlipidemic Rat (참취 및 씀바귀 첨가식이가 고지혈증 흰쥐의 심혈관 수축과 이완 및 혈관내피세포에 미치는 영향)

  • Lim, Sang-Sun;Lee, Jong-Ho
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.26 no.2
    • /
    • pp.300-307
    • /
    • 1997
  • The effects of Aster scaber and Ixeris dentata on cadiovascular system in hyperlipidemic rats were examined. Five groups of thirty Sprague Dawley rats were fed with the diet contained 1% cholesterol, 0.25% sodium cholate, 10% coconut oil and 5% lard(control group) for 4 weeks. Each experimental diet group was added with 5% plant powder or extract of the 5% plant powder by dry weight. Contractile or relaxation responses in the isolated artria and thoracic aortae were measured and the morphological changes of the aortic endotherium from the rats fed the experimental diet were inspected. In response to isoproterenol, the number of right atrial spontaneous beat was significantly lower in Cham chyi powder group$(PP_{1})$ and Sumbagui powder group$(PP_{2})$ than control at $10^(-8)M$ concentration. The contraction forces by injection of phenylephrine and calcium in isolated thoracic aorta were significantly low in each experimental groups compared with the control. The relaxation rates by acetylcholine represented comparatively higher value in $PP_{1}$ than control. The morphological changes of endothelial cell surface was a little in $PP_{1}$ and $PP_{2}$ compared with control, while the damages were considerably advanced in Cham chyi and Sumgbagui extract diet group$(PE_{1},\;PE_{2})$.

  • PDF

Characteristics of Biodegradation of Geosmin using BAC Attached Bacteria in Batch Bioreactor (정수처리용 생물활성탄(BAC) 부착 박테리아를 이용한 회분식 반응기에서의 Geosmin 생분해 특성)

  • Son, Hee-Jong;Jung, Chul-Woo;Choi, Young-Ik;Jang, Seong-Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.7
    • /
    • pp.699-705
    • /
    • 2010
  • In this study, three different biological activated carbons (BACs) were prepared from activated carbons made of each coal (F400, Calgon), coconut (Samchully) and wood(Pica, Picabiol) which were run for two and half years in the pilot plant. The attached bio-film microorganisms in and on the BACs were isolated and identified. The results showed that nine different bacteria species (Chryseomonas luteola, Stenotrophomonas maltophilia, Pseudomonas vesicularis, Aeromonas hydrophila, Spingomonas paucimobilis, Agrobacterium radiobacter, Pseudomonas fluorescens, Spirillum spp., and Pasteurella haemolytica) were isolated and identified, the dominant species was Pseudomonas sp. that had occupied 56.5%. More specifically, it was observed that the populations of the microorganisms deceased in the order: Pasteurella haemolytica (18.9%) > Chryseomonas luteola (4.0%) > Agrobacterium radiobacter (3.5%) > Aeromonas hydrophila (2.0%) in and on the BACs. After isolating of 9 species of biofilm microorganisms, the growth curve for the biomass was investigated. During 24~96 hours, the biomass has the highest concentration, and activity of the biomass was the best to uptake geosmin as carbon resources. The operation temperatures for investigating the biodegradation of geosmin were set at $4^{\circ}C$ and $25^{\circ}C$. Pseudomonas vesicularis, Pseudomonas fluorescens, Agrobacterium radiobacter and Stenotrophomonas maltophilia played a maior role in removing the target compound as geosmin. However, geosmin was not biodegraded well by Chryseomonas luteola, Spingomonas paucimobilis, and Spirillum spp.. It is also interesting to evaluate kinetics of biodegradability of geosmin. The first-order rate constants for biodegradability of geosmin at $4^{\circ}C$ and $25^{\circ}C$ were $0.00006{\sim}0.0002\;hr^{-1}$ and $0.0043{\sim}0.0046\;hr^{-1}$ respectively. Higher water temperature produced better geosmin removal rates. When concentrations of geosmin increased from 10 to 10,000 ng/L, the rate constants for biodegradability of geosmin increased from 0.0003 to $0.0882\;hr^{-1}$. As described earlier, higher geosmin concentration in the reactor produced higher rate constant.

Treatment of Malodorous Waste Air Containing Ammonia Using Biofilter System (바이오필터시스템을 이용한 암모니아 함유 악취폐가스 처리)

  • Lee, Eun Ju;Park, Sang Won;Nam, Dao Vinh;Chung, Chan Hong;Lim, Kwang-Hee
    • Korean Chemical Engineering Research
    • /
    • v.48 no.3
    • /
    • pp.391-396
    • /
    • 2010
  • In this research the characteristics of ammonia removal from malodorous waste-air were investigated under various operating condition of biofiilter packed with equal volume of rubber media and compost for the efficient removal of ammonia, representative source of malodor frequently generated at compost manufacturing factory and publicly owned facilities. Then the optimum conditions were constructed to treat waste-air containing ammonia with biofilter. Biofilter was run for 30 days(experimental frequency of 2 times/day makes 60 experimental times.) with the ammonia loading from $2.18g-N/m^3/h$ to $70g-N/m^3/h$ at $30^{\circ}C$. The ammonia removal efficiency reached almost 100% for I through IV stage of run to degrade up to the ammonia loading of $17g-N/m^3/h$. However the removal efficiency dropped to 80% when ammonia loading increased to $35g-N/m^3/h$, which makes the elimination capacity of ammonia $28g-N/m^3/h$ for V stage of run. However, the removal efficiency remained 80% and the maximum elimination capacity reached $55g-N/m^3/h$ when ammonia loading was doubled $70g-N/m^3/h$ for VI stage of run. Thus the maximum elimination capacity exceeded $1,200g-N/m^3/day$(i.e., $50g-N/m^3/h$) of the experiment of biofilter packed with rock wool inoculated with night soil sludge by Kim et al.. However, the critical loading did not exceed $810g-N/m^3/day$ (i.e., $33.75g-N/m^3/h$) of the biofilter experiment by Kim et al.. The reason to exceed the maximum elimination capacity of Kim et al. may be attributed to that the rubber media used as biofilter packing material provide the better environment for the fixation of nitrifying and denitrification bacteria to its surface coated with coconut based-activated carbon powder and well-developed inner-pores, respectively.

A Study on the Improvement of Skin-affinity and Spreadability in the Pressed Powder using Air Jet Mill Process and Mono-dispersed PMMA (Air Jet Mill 공법과 PMMA의 단분산성이 프레스드 파우더의 밀착성 및 발림성 향상에 대한 연구)

  • Song, Sang Hoon;Hong, Kyong Woo;Han, Jong Seob;Kim, Kyong Seob;Park, Sun Gyoo
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.43 no.1
    • /
    • pp.61-68
    • /
    • 2017
  • The key quality attributes of the pressed powder, one of base makeup products, are skin-affinity and spreadability. In general, there was a limit to meet skin-affinity and spreadability simultaneously, which are opposite attributes each other. In this study, air jet mill process was tried to satisfy two main properties. Skin-affinity was improved by a wet coating of sericite with a mixture of lauroyl lysine (LL) and sodium cocoyl glutamate (SCG). The application of mono-dispersed polymethyl methacrylate (PMMA) and diphenyl dimethicone/vinyl diphenyl dimethicone/silsesquioxane crosspolymer (DDVDDSC) improved both qualities. Air jet mill process has been mainly applied in the pharmaceutical and food industries, and is a method used for processing powder materials in cosmetic field. In this study, we were able to complete makeup cosmetics with an optimum particle size $6.8{\mu}m$ by combining the air jet mill process at the manufacturing stage. It was confirmed that the Ti element was uniformly distributed throughout the cosmetics by EDS mapping, and that the corners of the tabular grains were rounded by SEM analysis. It is considered that this can provide an effect of improving the spreadability when the cosmetic is applied to the skin by using a makeup tool. LL with excellent skin compatibility and SCG derived from coconut with little skin irritation were wet coated to further enhance the adhesion of sericite. SEM images were analyzed to evaluate effect of the dispersion and uniformity of PMMA on spreadability. With the spherical shapes of similar size, it was found that the spreading effect was further increased when the distribution was homogeneously mono-dispersed. The dispersion and spreadability of PMMA were confirmed by measuring the kinetic friction and optimal content was determined. The silicone rubber powder, DDVDDSC, was confirmed by evaluating the hardness, spreading value, and drop test. Finally, it was found that the dispersion of PMMA and silicone rubber powder affected spreadability. Such makeup cosmetics have excellent stability in drop test while having appropriate hardness, and good stability over time. Taken together, it is concluded that air jet mill process can be utilized as a method to improve skin-affinity and spreadability of the pressed powder.

Preparation of Nanoporous Activated Carbon with Sulfuric Acid Lignin and Its Application as a Biosorbent (황산 가수분해 잔사 리그닌을 이용한 나노 세공 활성탄 제조 및 친환경 흡착제로의 활용 가능성 평가)

  • Hwang, Hyewon;Choi, Joon Weon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.46 no.1
    • /
    • pp.17-28
    • /
    • 2018
  • In this study, catalytic activation using sulfuric acid lignin (SAL), the condensed solid by-product from saccharification process, with potassium hydroxide at $750^{\circ}C$ for 1 h in order to investigate its potential to nanoporous carbon In this study, catalytic activation using sulfuric acid lignin (SAL), the condensed solid by-product from saccharification process, with potassium hydroxide at $750^{\circ}C$ for 1 h in order to investigate its potential to nanoporous carbon material. Comparison study was also conducted by production of activated carbon from coconut shell (CCNS), Pinus, and Avicel, and each activated carbon was characterized by chemical composition, Raman spectroscopy, SEM analysis, and BET analysis. The amount of solid residue after thermogravimetric analysis of biomass samples at the final temperature of $750^{\circ}C$ was SAL > CCNS > Pinus > Avicel, which was the same as the order of activated carbon yields after catalytic activation. Specifically, SAL-derived activated carbon showed the highest value of carbon content (91.0%) and $I_d/I_g$ peak ratio (4.2), indicating that amorphous large aromatic structure layer was formed with high carbon fixation. In addition, the largest changes was observed in SAL with the maximum BET specific surface area and pore volume of $2341m^2/g$ and $1.270cm^3/g$, respectively. Furthermore, the adsorption test for three kinds of organic pollutants (phenol, 2,4-Dichlorophenoxyacetic acid, and carbofuran) were conducted, and an excellent adsorption capacity more than 90 mg/g for all activated carbon was determined using 100 ppm of the standard solution. Therefore, SAL, a condensed structure, can be used not only as a nanoporous carbon material with high specific surface area but also as a biosorbent applied to a carbon filter for remediation of organic pollutants in future.

Characteristics of Bed Media for Reducing Odor from Livestock Facilities (축사 악취저감을 위한 바이오필터 충전재의 악취제거 특성)

  • 한원석;장동일;방승훈;이승주
    • Journal of Animal Environmental Science
    • /
    • v.9 no.2
    • /
    • pp.93-102
    • /
    • 2003
  • This study designed and constructed an experimental column far adhesion efficiency test and conducted experiment to investigate the offensive odor adhesion efficiency of filter bed materials. The offensive odor adhesion experiment was conducted using mixture of high physical adhesion efficiency material, and the fixity of deodorization microorganism of selected filter bed material was tested using ammonia exclude microorganism A4-­2 and sulfur oxidation microorganism S5­-5.2 those were cultured at the Agricultural Chemical Department of Chungnam National University, and deodorization efficiency of selected filter bed material mixture was tested. Following are summary of these tests results. 1. Amount of elimination of the offensive odor gas of ammonia and hydrogen sulfide per unit volume was 0.054 and 0.016$\ell/\textrm{cm}^3$ in rice hull, 0.01 and 0.004 $\ell/\textrm{cm}^3$ in rice straw 0.158 and 0.01 $\ell/\textrm{cm}^3$ in coconut, 0.014 and 0.02$\ell/\textrm{cm}^3$ perlite, 0.004 and 0.003$\ell/\textrm{cm}^3$ in high road ball, and 0.112 and 0.015 $\ell/\textrm{cm}^3$ in chaff of pine, respectively. 2. Amount of elimination of offensive odor gas of ammonia and hydrogen sulfide per unit volume was 0.045 and 0.014$\ell/\textrm{cm}^3$ in mixture 1, 0.079 and 0.016$\ell/\textrm{cm}^3$ in mixture 2, 0.123 and 0.017 $\ell/\textrm{cm}^3$ in mixture 3, 0.031 and 0.015$\ell/\textrm{cm}^3$ in mixture 4, 0.055 and 0.016$\ell/\textrm{cm}^3$ in mixture 5, and 0.111 and 0.020$\ell/\textrm{cm}^3$ in mixture 6, respectively. 3. The offensive odor elimination microorganism inoculated to mixture of chaff of pine(70%) and perlite(30%) showed the elimination efficiency of 99.06% and 96.61% against the ammonia and hydrogen sulfide, respectively, during 24 hours period.

  • PDF

Contents and Fatty Acid Compositions in Fats Extracted from Ice Creams and Ice Cream-Related Products (아이스크림 제품류에 함유되어 있는 지방함량 및 지방산조성)

  • Shin, Min-Kyung;Oh, Hyun-Hee;Hwang, Keum-Taek
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.35 no.6
    • /
    • pp.721-728
    • /
    • 2006
  • The objective of the study was to analyze the contents and fatty acid compositions in the extracted fats from selected commercial ice creams and ice cream-related products. Seventy four ice creams and ice cream-related products were collected from local stores: 22 regular 'ice creams', 10 premium 'ice creams', 22 'ice milks', 4 'sherbets', 11 'non-milk-fat ice creams' and 5 'non-milk product ice creams'. Contents and fatty acid compositions of the fats in the ice creams and ice cream-related products were analyzed. Fat contents in regular 'ice creams', premium 'ice creams' and 'ice milks' were $5{\sim}11%,\;13{\sim}17%\;and\;2{\sim}10%$, respectively. 'Sherbets', 'non-milk-fat ice creams' and 'non-milk product ice creams' contained $2{\sim}7%,\;4{\sim}11%\;and\;1{\sim}2%$ fats, respectively. Fats extracted from 14 regular 'ice creams', all of the premium 'ice creams' and 11 'ice milks' contained $63{\sim}75%$ saturated fatty acids and $2{\sim}5%$ trans fatty acids. Their fatty acid compositions were similar to those in milks and butter. However, fats from 8 regular 'ice creams' and 11 'ice milks' contained $11{\sim}28%\;and\;11{\sim}34%$ lauric acid, respectively. Since these levels of lauric acid were 3 times more than in milk or butter, other fats along with milk fat might be used for manufacturing these' ice creams' and 'ice milks'. Out of these 19 products, only 5 products were labelled as 'coconut oil' or 'refined oil' as well as milk fat being used. Fats extracted from 'sherbets', 'non-milk-fat ice creams' and 'non-milk product ice creams' contained $81{\sim}92%,\;76{\sim}99%\;and\;84{\sim}99%$ saturated fatty acids, respectively. Lauric acid was the most abundant fatty acid in the fats of these products, being $33{\sim}34%,\;17{\sim}45%\;and\;27{\sim}46%$ of the total fatty acids, respectively.

Removal Characteristics of Sulfonamide Antibiotic Compounds in Biological Activated Carbon Process (생물활성탄 공정에서의 Sulfonamide계 항생물질 제거특성)

  • Son, Hee-Jong;Jung, Jong-Moon;Roh, Jae-Soon;Yu, Pyung-Jong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.2
    • /
    • pp.96-101
    • /
    • 2009
  • In this study, the effects of three different biological activated carbon (BAC) materials (each coal, coconut and wood based activated carbons), empty bed contact time (EBCT) and water temperature on the removal of sulfonamide 5 species in BAC filters were investigated. Experiments were conducted at three water temperatures (5, 15 and $25^{\circ}C$) and four EBCTs (5, 10, 15 and 20 min). The results indicated that coal based BAC retained more attached bacterial biomass on the surface of the activated carbon than the other BACs, increasing EBCT or increasing water temperature increased the sulfonamide 5 species removal in BAC columns. In the coal-based BAC columns, sulfachloropyridazine (SCP), sulfamethazine (SMT) and sulfathiazole (STZ) removal efficiencies were 30~80% and sulfadimethoxine (SDM), sulfamethoxazole (SMX) removal efficiencies were 18~70% for 5~20 min EBCT at $25^{\circ}C$. The kinetic analysis suggested a first-order reaction model for sulfonamide 5 species removal at various water temperatures (5~$25^{\circ}C$). The pseudo-first-order reaction rate constants and half-lives were also calculated for sulfonamide 5 species removal at 5~$25^{\circ}C$. The reaction rate and half-lives of sulfonamide 5 species ranging from 0.0094~0.0718 $min^{-1}$ and 9.7 to 73.7 min various water temperaturs and EBCTs in this study could be used to assist water utilities in designing and operating BAC filters for sulfonamide antibiotic compounds removal.

Studies on Requirements of Optimum Dietary Essential Fatty Acids in Juvenile Eel, Anguilla japonica (치어기 뱀장어의 사료내 필수지방산 요구량에 관한 연구)

  • 배준영;한경민;박건준;배승철
    • Journal of Aquaculture
    • /
    • v.17 no.4
    • /
    • pp.275-281
    • /
    • 2004
  • The present study was conducted to evaluate dietary requirements for essential fatty acids (EFAs) such as linoleic acid (LA, l8:2n-6), -lenolenic acid (LNA, 18:3n-3), or docosahexaenoic acid (DHA, 22:6n-3), eicosapentaenoic acid (EPA, 20:5n-3) and arachidonic acid (ARA, 20:4n-6) in juvenile eel Anguilla japonica cultured in a recirculating system for 16 weeks. The experimental diets contained 50% crude protein, 10% crude lipid and 3800 kcal/kg energy.Brown fish meal and blood meal were used as the main protein sources, while coconut oil, com oil and linseed oil were used as the lipid source to yield target fatty acids ratios. At the end of the trial, the effects of essential fatty acids supplementation on weight gain (WG), specific growth rate (SGR), feeding efficiency (FE), proximate composition andwhole body fatty acids contents were examined. WG, SGR, and FEof eels fed diet D2, D3, was significantly higher (P<0.05) than those of fish fed the other diets. Whole body HUFA concentration of eels fed D 1 was significantly lower (P<0.05) than those fed the other diets. HUFA/SFA (saturated fatty acids) ratio of whole body in eels fed diets D2, D3 and D6 were significantly higher than that of eels fed diet D1 (P<0.05).DHA/EPA ratio of whole body in eels fed diet D7was significantly higher than those fed the other diets; and eels fed diet D5 showed the lowest DHA/EPA ratio among all the dietary treatments (P<0.05).Based on the experimental results, we concluded that LNA (n-3) and LA (n-6) were necessary for optimum growth of juvenile eel, and the dietary requirement of LNA and LA were 0.35∼0.5% and 0.5∼0.65%, respectively.