• Title/Summary/Keyword: Cobalt nanofiber

Search Result 6, Processing Time 0.019 seconds

Fabrication of Electrospun Cobalt Nanofiber (전기 방사 기반의 코발트 나노 섬유의 제작)

  • Heo, Joonseong;Lim, Geunbae
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.1
    • /
    • pp.35-40
    • /
    • 2015
  • Electrospinning method has easy preparation of nanofibers with a simple and versatile technique. Electrospun nanofiber is widely used by the simple approach and have great potentials in the numerous applicaitons of medicine, photonics, catalysts, sensors, etc. including advantage of their specific characteristics such as large surface to volume ratio. This paper focused on the fabrication of cobalt electrospun nanofibrer for applications such as electronic, optical and mechanical devices by metal based material. We fabricated cobalt nanofibers on aluminum foil by an electrospinning method. The electrospinning process was performed at a high voltage, 8 kV. The distance between the needle tip and the solution surface in the bath was 5 cm. The PVB - cobalt based nitrate solution was filled in a 10 mL syringe connected to a 22 gauge needle. We confirmed electrospun cobalt nanofiber after annealing process by SIMS (Secondary Ion Mass Spectrometry) analysis. The concept design, fabrication and results of mapping measurements are reported.

Capacitance Property for a Carbon-nanofiber/Cobalt Oxide Composite Electrode (탄소나노섬유/코발트산화물 복합전극의 케폐시턴스 특성)

  • Yoon, Yu-Il;Ko, Jang-Myoun
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.8
    • /
    • pp.482-485
    • /
    • 2008
  • Composite electrode consisting of carbon nanofiber (CNF) and cobalt oxide was prepared for supercapacitor electrode, and its electrochemical property was investigated by means of cyclic voltammetry. Cyclic voltammetric results for the composite electrode showed it had specific capacitance value of 420 F/g at 5 mV/s, which was higher than capacitance value of 180 F/g for the bare CNF. It is concluded that the capacitive property of CNF can be improved by coating cobalt oxide on it to increase the surface area of cobalt oxide.

Synthesis of Perforated Polygonal Cobalt Oxides using a Carbon Nanofiber Template (탄소나노섬유 모형을 이용한 천공된 다각형 코발트 산화물 합성)

  • Sin, Dong-Yo;An, Geon-Hyoung;Ahn, Hyo-Jin
    • Journal of Powder Materials
    • /
    • v.22 no.5
    • /
    • pp.350-355
    • /
    • 2015
  • Perforated polygonal cobalt oxide ($Co_3O_4$) is synthesized using electrospinning and a hydrothermal method followed by the removal of a carbon nanofiber (CNF) template. To investigate their formation mechanism, thermogravimetric analysis, field-emission scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy are examined. To obtain the optimum condition of perforated polygonal $Co_3O_4$, we prepare three different weight ratios of the Co precursor and the CNF template: sample A (Co precursor:CNF template- 10:1), sample B (Co precursor:CNF template-3.2:1), and sample C (Co precursor:CNF template-2:1). Among them, sample A exhibits the perforated polygonal $Co_3O_4$ with a thin carbon layer (5.7-6.2 nm) owing to the removal of CNF template. However, sample B and sample C synthesized perforated round $Co_3O_4$ and destroyed $Co_3O_4$ powders, respectively, due to a decreased amount of Co precursor. The increased amount of the CNF template prevents the formation of polygonal $Co_3O_4$. For sample A, the optimized weight ratio of the Co precursor and CNF template may be related to the successful formation of perforated polygonal $Co_3O_4$. Thus, perforated polygonal $Co_3O_4$ can be applied to electrode materials of energy storage devices such as lithium ion batteries, supercapacitors, and fuel cells.

Study on the Optimization of Reduction Conditions for Samarium-Cobalt Nanofiber Preparation (사마륨-코발트 자성 섬유 제조를 위한 환원 거동 연구 및 환원-확산 공정의 최적화)

  • Lee, Jimin;Kim, Jongryoul;Choa, Yong-Ho
    • Journal of Powder Materials
    • /
    • v.26 no.4
    • /
    • pp.334-339
    • /
    • 2019
  • To meet the current demand in the fields of permanent magnets for achieving a high energy density, it is imperative to prepare nano-to-microscale rare-earth-based magnets with well-defined microstructures, controlled homogeneity, and magnetic characteristics via a bottom-up approach. Here, on the basis of a microstructural study and qualitative magnetic measurements, optimized reduction conditions for the preparation of nanostructured Sm-Co magnets are proposed, and the elucidation of the reduction-diffusion behavior in the binary phase system is clearly manifested. In addition, we have investigated the microstructural, crystallographic, and magnetic properties of the Sm-Co magnets prepared under different reduction conditions, that is, $H_2$ gas, calcium, and calcium hydride. This work provides a potential approach to prepare high-quality Sm-Co-based nanofibers, and moreover, it can be extended to the experimental design of other magnetic alloys.

Fabrication of Octahedral Co3O4/Carbon Nanofiber Composites for Pt-Free Counter Electrode in Dye-Sensitized Solar Cells (염료감응 태양전지의 Pt-free 상대전극을 위한 팔면체 Co3O4/탄소나노섬유 복합체 제조)

  • An, HyeLan;An, Geon-Hyoung;Ahn, Hyo-Jin
    • Korean Journal of Materials Research
    • /
    • v.26 no.5
    • /
    • pp.250-257
    • /
    • 2016
  • Octahedral $Co_3O_4$/carbon nanofiber (CNF) composites are fabricated using electrospinning and hydrothermal methods. Their morphological characteristics, chemical bonding states, and electrochemical properties are used to demonstrate the improved photovoltaic properties of the samples. Octahedral $Co_3O_4$ grown on CNFs is based on metallic Co nanoparticles acting as seeds in the CNFs, which seeds are directly related to the high performance of DSSCs. The octahedral $Co_3O_4$/CNFs composites exhibit high photocurrent density ($12.73mA/m^2$), superb fill factor (62.1 %), and excellent power conversion efficiency (5.61 %) compared to those characteristics of commercial $Co_3O_4$, conventional CNFs, and metallic Co-seed/CNFs. These results can be described as stemmnig from the synergistic effect of the porous and graphitized matrix formed by catalytic graphitization using the metal cobalt catalyst on CNFs, which leads to an increase in the catalytic activity for the reduction of triiodide ions. Therefore, octahedral $Co_3O_4$/CNFs composites can be used as a counter electrode for Pt-free dye-sensitized solar cells.

Synthesis and Characterization of Carbon nanofibers on Co and Cu Catalysts by Chemical Vapor Deposition

  • Park, Eun-Sil;Kim, Jong-Won;Lee, Chang-Seop
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.6
    • /
    • pp.1687-1691
    • /
    • 2014
  • This study reports on the synthesis of carbon nanofibers via chemical vapor deposition using Co and Cu as catalysts. In order to investigate the suitability of their catalytic activity for the growth of nanofibers, we prepared catalysts for the synthesis of carbon nanofibers with Cobalt nitrate and Copper nitrate, and found the optimum concentration of each respective catalyst. Then we made them react with Aluminum nitrate and Ammonium Molybdate to form precipitates. The precipitates were dried at a temperature of $110^{\circ}C$ in order to be prepared into catalyst powder. The catalyst was sparsely and thinly spread on a quartz tube boat to grow carbon nanofibers via thermal chemical vapor deposition. The characteristics of the synthesized carbon nanofibers were analyzed through SEM, EDS, XRD, Raman, XPS, and TG/DTA, and the specific surface area was measured via BET. Consequently, the characteristics of the synthesized carbon nanofibers were greatly influenced by the concentration ratio of metal catalysts. In particular, uniform carbon nanofibers of 27 nm in diameter grew when the concentration ratio of Co and Cu was 6:4 at $700^{\circ}C$ of calcination temperature; carbon nanofibers synthesized under such conditions showed the best crystallizability, compared to carbon nanofibers synthesized with metal catalysts under different concentration ratios, and revealed 1.26 high amorphicity as well as $292m^2g^{-1}$ high specific surface area.