• Title/Summary/Keyword: Cobalt effect

Search Result 314, Processing Time 0.026 seconds

Temperature-Dependent Mn Substitution Effect on LiNiO2

  • Seungjae Jeon;Sk. Khaja Hussain;Jin Ho Bang
    • Journal of Electrochemical Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.161-167
    • /
    • 2024
  • Despite the important role of manganese (Mn) in cobalt-free, Ni-rich cathode materials, existing reports on the effects of Mn as a substitute for cobalt are not consistent. In this work, we analyzed the performance of cathodes comprised of Li(Ni1-xMnx)O2 (LNMO). Both beneficial and detrimental results occurred as a result of the Mn substitution. We found that a complex interplay of effects (Li/Ni mixing driven by magnetic frustration, grain growth suppression, and retarded lithium insertion/extraction kinetics) influenced the performance and was intimately related to calcination temperature. This indicates the importance of establishing an optimal reaction temperature for the development of high-performance LNMO.

Fuctionalization of SBA-16 Mesoporous Materials with Cobalt(III) Cage Amine Complex

  • Han, Sang-Cheol;Sujandi, Sujandi;Park, Sang-Eon
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.9
    • /
    • pp.1381-1384
    • /
    • 2005
  • Surface modification of tridimensional cubic mesoporous silica, SBA-16, was investigated with pendant arm functionalized cobalt diaminosarcophagine (diAMsar) cage complex which covalently grafted onto the silica surface through the silication with sylanol group. The spectroscopic results showed that the mesoporous structure was preserved under the $[Co(diAMsar)]^{3+}$ grafting reaction condition. Successful grafting prevented the cobalt diAMsar cage from leaching out from the SBA-16 support.

Effects of Ti and TiN Capping Layers on Cobalt-silicided MOS Device Characteristics in Embedded DRAM and Logic

  • Kim, Jong-Chae;Kim, Yeong-Cheol;Choy, Jun-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.9
    • /
    • pp.782-786
    • /
    • 2001
  • Cobalt silicide has been employed to Embedded DRAM (Dynamic Random Access Memory) and Logic (EDL) as contact material to improve its speed. We have investigated the influences of Ti and TiN capping layers on cobalt-silicided Complementary Metal-Oxide-Semiconductor (CMOS) device characteristics. TiN capping layer is shown to be superior to Ti capping layer with respect to high thermal stability and the current driving capability of pMOSFETs. Secondary Ion Mass Spectrometry (SIMS) showed that the Ti capping layer could not prevent the out-diffusion of boron dopants. The resulting operating current of MOS devices with Ti capping layer was degraded by more than 10%, compared with those with TiN.

  • PDF

Magnetic Properties of Electrodeposited Iron and Cobalt on Porous Aluminum Oxide Layer (다공성 알루미늄 양극산화 피막에 도금된 철 및 코박트의 자기적 성질)

  • Kim, K. H.;Kang, T.;Sohn, H. J.
    • Journal of the Korean institute of surface engineering
    • /
    • v.23 no.3
    • /
    • pp.150-159
    • /
    • 1990
  • The magnetic properties of electrodeposited iron and cobalt films on porous aluminum oxide film were examined. There exists perpendicular magnetic anisotropy due to the shape anisotropy. The coercivity and squareness ratio of films were strongly dependent on deposited particle diameter. The effect of packing fraction on squareness ratio was also apprecible. Unlike the iron-deposited films, the magnetic properties of cobalt films were changed by preferred orientation because of it's large crystal ansotropy constant.(about 10 times of Fe) The Fe deposited films were found to be more suitable for perpendicular magenetic recording media bacause perpendicular coercivity, squareness ratio and the ratio of perpendicular coercivity to horizontal ones of iron films are greater than those of cobalt films.

  • PDF

Effect of Cobalt Loading on the Performance and Stability of Oxygen Reduction and Evolution Reactions in Rechargeable Zinc-air Batteries

  • Sheraz Ahmed;Joongpyo Shim;Gyungse Park
    • Journal of the Korean Chemical Society
    • /
    • v.68 no.2
    • /
    • pp.87-92
    • /
    • 2024
  • The commercialization of rechargeable metal-air batteries is extremely desirable but designing stable oxygen reduction reaction (ORR) catalysts with non-noble metal still has faced challenges to replace platinum-based catalysts. The nonnoble metal catalysts for ORR were prepared to improve the catalytic performance and stability by the thermal decomposition of ZIF-8 with optimum cobalt loading. The porous carbon was obtained by the calcination of ZIF-8 and different loading amounts of Co nanoparticles were anchored onto porous carbon forming a Co/PC catalyst. Co/PC composite shows a significant increase in the ORR value of current and stability (500 h) due to the good electronic conductive PCN support and optimum cobalt metal loading. The significantly improved catalytic performance is ascribed to the chemical structure, synergistic effects, porous carbon networks, and rich active sites. This method develops a new pathway for a highly active and advantageous catalyst for electrochemical devices.

Effect of a Copper, Selenium and Cobalt Soluble Glass Bolus Given to Grazing Yaks

  • Liu, Zongping
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.9
    • /
    • pp.1433-1437
    • /
    • 2007
  • Two field trials were carried out to evaluate the performance of a soluble glass copper, cobalt and selenium bolus for maintaining adequate levels of the three trace elements in yaks. Forty yaks were used in trial 1 and 60 yaks were used in trial 2. In each trial two commercial soluble glass boluses were administered to half of the yaks. Blood samples were taken from the jugular vein at day 0, 30, 60, 90 in trial 1 and at day 0, 45, 75 and 105 in trial 2. The samples were analysed for copper status (serum caeruloplasmin activity and copper concentration), cobalt status (serum vitamin $B_{12}$ concentration and cobalt concentration), selenium status (erythrocyte glutathione peroxidase activity and selenium concentration) and serum zinc concentration. The erythrocyte glutathione peroxidase activities, serum caeruloplasmin activities and serum vitamin $B_{12}$ concentrations for trial 1 and 2 were all significantly increased for the bolused yaks (p<0.001 or p<0.01) on all sampling days. The bolused yaks had a significantly higher selenium and copper status in serum than the control yaks on all sampling days in trial 1 and 2 (p<0.05 or p<0.01). There were no significant differences in zinc and cobalt concentrations between the bolused yaks and the controls.

Effect of Inflow Rate of Raw Material Solution on the Fabrication of Nano-Sized Cobalt Oxide Powder by Spray Pyrolysis Process

  • Kim, Dong Hee;Yu, Jae Keun
    • Korean Journal of Materials Research
    • /
    • v.26 no.11
    • /
    • pp.662-669
    • /
    • 2016
  • In order to identify changes in the nature of the particles due to changes in the inflow rate of the raw material solution, the present study was intended to prepare nano-sized cobalt oxide ($Co_3O_4$) powder with an average particle size of 50 nm or less by spray pyrolysis reaction using raw cobalt chloride solution. As the inflow rate of the raw material solution increased, droplets formed by the pyrolysis reaction showed more divided form and the particle size distribution was more uneven. As the inflow rate of the solution increased from 2 to 10 ml/min, the average particle size of the formed particles increased from about 25 nm to 40 nm, while the average particle size did not show significant changes when the inflow rate increased from 10 to 50 ml/min. XRD analysis showed that the intensity of the XRD peaks increased remarkably when the inflow rate of the solution increased from 2 to 10 ml/min. On the other hand, the peak intensity stayed almost constant when the inflow rate increased from 10 to 50 ml/min. With the increase in the inflow rate from 2 to 10 ml/min, the specific surface area of the particles decreased by approximately 20 %. On the contrary, the specific surface area stayed constant when the inflow rate increased from 10 to 50 ml/min.

Evaluation of fitness of metal-ceramic crown fabricated by cobalt-chrome alloy (코발트-크롬 합금으로 제작된 금속-도재관의 적합도 평가)

  • Kim, Jae-Hong;Kim, Won-Soo;Kim, Ki-Baek
    • Journal of Korean society of Dental Hygiene
    • /
    • v.13 no.2
    • /
    • pp.361-368
    • /
    • 2013
  • Objectives : The purpose of this in vitro study was to evaluate the effect of firing cycles on the marginal and internal fit of metal ceramic crown. Methods : Ten same cases of stone models (abutment teeth 11) were manufactured. Ten cobalt-chrome cores were made per each models and the marginal and internal fit was evaluated through a silicone replica technique. The marginal and internal fit of specimens was measured twice. The first measurement was done after manufacturing cobalt-chrome alloy core and the second measurement was done after porcelain firing. T-test of paired sample for statistical analysis was executed with SPSS 12.0K for Windows (${\alpha}$=0.05). Results : Mean(SD) marginal and internal fit were 77.1(23.3) ${\mu}m$ for the cobalt-chrome alloy core group and 84.4(21.9) ${\mu}m$ for the metal-ceramic crown group. They were statistically significant differences between groups for marginal and internal fit (p<.05). Conclusions : All metal ceramic crowns showed marginal and internal fit ranged within the current clinical recommendations.

Removal of cobalt ions from aqueous solution using chitosan grafted with maleic acid by gamma radiation

  • Zhuang, Shuting;Yin, Yanan;Wang, Jianlong
    • Nuclear Engineering and Technology
    • /
    • v.50 no.1
    • /
    • pp.211-215
    • /
    • 2018
  • Chitosan was modified by gamma radiation-induced grafting with maleic acid and then used for the removal of cobalt ions from aqueous solutions. Chitosan-g-maleic acid was characterized by Fourier Transform infrared spectroscopy (FT-IR). The effect of the dose (1-5 kGy) and monomer concentration (0.3-1.3%, m/v) on the grafting ratio was examined. The adsorption kinetics and isotherms were also investigated. The results showed that the optimal dose for grafting was 2 kGy. When monomer concentration was within the range of 0.3-1.3% (m/v), the grafting ratio increased almost linearly. For the adsorption of cobalt ions by chitosan-g-maleic acid beads, the pseudo second-order kinetic model ($R^2=0.99$) and Temkin isotherm model ($R^2=0.96$) were able to fit the experimental data reasonably well. The equilibrium adsorption capacity of cobalt ions increased from 2.00 mg/g to 2.78 mg/g after chitosan modification.

The Effect of Cobalt Oxide Addition on Electrical and Dielectic Stability of Zinc Oxide Varistors (코발트 산화물 첨가가 산화아연 바리스터의 전기적, 유전적 안정성에 미치는 영향)

  • Nahm Choon-Woo;Yoo Dae-Hoon
    • Korean Journal of Materials Research
    • /
    • v.15 no.11
    • /
    • pp.722-729
    • /
    • 2005
  • The electrical and dielectric stability of zinc oxide-based varistors were investigated with the cobalt oxide contents in the range of $0.5\~5.0 mo\l%$. As cobalt oxide contents increased, the ceramic density increased in the range of $5.25\~5.55g/cm^3$ and the varistor voltage decreased in the range of $235.3\~86.0V$. The varistor with on addition of cobalt oxide $1.0 mol\%$ exhibited good nonlinearity. in which the nonlinear exponent is 66.6 and the leakage current is $1.2{\mu}A$. Furthermore, the varistors exhibited the highest electrical and dielectric stability, with $\%{\Delta}V_{1mA}=-1.9\%,\;\%{\Delta}{\alpha}=-10.5\%,\;\%{\Delta}I_L=+275.0\%,\;and\;\%{\Delta}tna{\delta}=+55.6\%$, under DC accelerated aging $0.95V_{1mA}/150^{\circ}C/24h$.