• Title/Summary/Keyword: Cobalt (Co)

Search Result 992, Processing Time 0.029 seconds

A Study on Properties of Electrodeposited Nickel-Cobalt Alloy Films from Sulfamate Solution (설파민산 니켈-코발트 합금도금 박막 물성에 대한 실험 연구)

  • Koo, Seokbon;Jeon, Junmi;Lee, Changmyeon;Hur, Jinyoung;Lee, HongKee
    • Journal of the Korean institute of surface engineering
    • /
    • v.50 no.1
    • /
    • pp.24-28
    • /
    • 2017
  • The electrodeposition of Ni-Co alloy from a sulfamate bath was investigated. The cobalt content in the Ni-Co deposits is more influenced by the temperature or stirring effect than the current density in the process parameters. As cobalt contents in the Ni-Co deposited layer increased from 0 wt.% up to 43 wt.%, hardness value of the layer rised from 400 Hv up to 700 Hv and crystal orientation (111) increased. However, (200) and crystal size significantly reduced. The tensile and yield strength also increased, while the modulus of elasticity showed the maximum value of $10.4N/mm^2$ at 29 wt.%.

Cobalt ferrite nanotubes and porous nanorods for dye removal

  • Girgis, E.;Adel, D.;Tharwat, C.;Attallah, O.;Rao, K.V.
    • Advances in nano research
    • /
    • v.3 no.2
    • /
    • pp.111-121
    • /
    • 2015
  • $CoFe_2O_4$ nanotubes and porous nanorods were prepared via a simple one-pot template-free hydrothermal method and were used as an adsorbent for the removal of dye contaminants from water. The properties of the synthesized nanotubes and porous nanorods were characterized by electron diffraction, transmission electron microscopy and x-ray powder diffraction. The Adsorption characteristics of the $CoFe_2O_4$ were examined using polar red dye and the factors affecting adsorption, such as, initial dye concentration, pH and contact time were evaluated. The overall trend followed an increase of the sorption capacity reaching a maximum of 95% dye removal at low pHs of 2-4. An enhancement in the removal efficiency was also noticed upon increasing the contact time between dye molecules and $CoFe_2O_4$ nanoparticles. The final results indicated that the $CoFe_2O_4$ nanotubes and porous nanorods can be considered as an efficient low cost and recyclable adsorbent for dye removal with efficiency 94% for Cobalt ferrite nanotubes and for Cobalt ferrite porous nanorods equals 95%.

Identification of Derivatives of Cobalt-binding BLM-A2 by NMR

  • Lee, Seongeon;Shin, Donghyuk;Woo, Sunhee;Won, Hoshik
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.16 no.2
    • /
    • pp.133-146
    • /
    • 2012
  • Three different derivatives were obtained in the synthesis of cobalt-binding BLM-A2 and characterized by NMR and Mass spectrometry. It was found that Component 1 is Co(II)($2H_2O$)(BLM-A2), component 2 is Co(III)($OOH^-$)(BLM-A2) and component 3 is Co(III)($H_2O$)($OH^-$)(BLM-A2), respectively. Component 2 and 3 were interestingly dominated when CoBLM-A2 complex was synthesized under basic condition. In this experiment, it was revealed newly that the brown form (component 1) was 6-coordinated structure composed with not 5 ligands but 4 ligands from BLM-A2 and with $2H_2O$ as the axial ligands. The component 3 exhibiting a novel ligand configuration is found, and the structure of component 3 was observed to be very similar to that of component 1 in the kind of their ligands but one of the axial ligand is $OH^-$ instead of $H_2O$. These ligand configurations are different from the green form (component 2) exhibiting 6-coordinate structure composed of 5 ligands from BLM-A2 and one ligand of $OOH^-$, being consistent with former studies.

Synthesis of CoO/Co(OH)2 Nanosheets Depending on Reaction Temperatures (반응 온도에 따른 CoO/Co(OH)2 나노시트의 합성)

  • Minjeong Lee;Gayoung Yoon;Gyeong Hee Ryu
    • Korean Journal of Materials Research
    • /
    • v.33 no.5
    • /
    • pp.222-228
    • /
    • 2023
  • Transition metal oxides formed by a single or heterogeneous combination of transition metal ions and oxygen ions have various types of crystal structures, which can be classified as layered structures and non-layered structures. With non-layered structures, it is difficult to realize a two-dimensional structure using conventional synthesis methods. In this study, we report the synthesis of cobalt oxide into wafer-scale nanosheets using a surfactant-assisted method. A monolayer of ionized surfactant at the water-air interface acts as a flexible template for direct cobalt oxide crystallization below. The nanosheets synthesized on the water surface can be easily transferred to an arbitrary substrate. In addition, the synthesizing morphological and crystal structures of the nanosheets were analyzed according to the reaction temperatures. The electrochemical properties of the synthesized nanosheets were also measured at each temperature. The nanosheets synthesized at 70 ℃ exhibited higher catalytic properties for the oxygen evolution reaction than those synthesized at other temperatures. This work suggests the possibility of changing material performance by adjusting synthesis temperature when synthesizing 2D nanomaterials using a wide range of functional oxides, resulting in improved physical properties.

The Effects of Cobalt Addition on Sliding Wear Properties of Multi-component White Cast Iron (다합금 백주철의 미끄럼 마모특성에 미치는 코발트 첨가의 영향)

  • Lee, Han-Young
    • Journal of Korea Foundry Society
    • /
    • v.24 no.4
    • /
    • pp.202-208
    • /
    • 2004
  • Effects of Co addition on sliding wear properties of multi-component white cast iron were investigated. The microstructures of multi-component white cast iron containing from 0%Co to 10%Co exhibited little difference. However, the hardness increased with an increase of the Co content. Increasing the Co content, wear properties were improved and the iron oxide on worn surface was increased in the low sliding speed range of the steady-state wear region. Hence, Co addition was effective to improve the wear properties of multi-component white cast iron by accelerating the corrosive wear as well as the enhancement effect of hardness.

Electrochemical Properties of Additive-Free Nanostructured Cobalt Oxide (CoO) Lithium Ion Battery Electrode (첨가제 없이 제작된 나노구조 코발트 산화물 리튬이온 배터리 전극의 전기 화학적 특성)

  • Kim, Juyun;Park, Byoungnam
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.5
    • /
    • pp.335-340
    • /
    • 2018
  • Transition metal oxide materials have attracted widespread attention as Li-ion battery electrode materials owing to their high theoretical capacity and good Li storage capability, in addition to various nanostructured materials. Here, we fabricated a CoO Li-ion battery in which Co nanoparticles (NPs) are deposited into a current collector through electrophoretic deposition (EPD) without binding and conductive agents, enabling us to focus on the intrinsic electrochemical properties of CoO during the conversion reaction. Through optimized Co NP synthesis and electrophoretic deposition (EPD), CoO Li-ion battery with 630 mAh/g was fabricated with high cycle stability, which can potentially be used as a test platform for a fundamental understanding of conversion reaction.

Detection of Toxic Heavy Metal, Co(II) Trace via Voltammetry with Semiconductor Microelectrodes

  • Ly, Suw Young;Lee, Chang Hyun;Koo, Jae Mo
    • Toxicological Research
    • /
    • v.33 no.2
    • /
    • pp.135-140
    • /
    • 2017
  • The cobalt (Co(II)) ion is a main component of alloys and considered to be carcinogenic, especially due to the carcinogenic and toxicological effects in the aquatic environment. The toxic trace of the Co(II) detection was conducted using the infrared photodiode electrode (IPDE) using a working electrode, via the cyclic and square-wave anodic stripping voltammetry. The results indicated a sensitive oxidation peak current of Co(II) on the IPDE. Under the optimal conditions, the common-type glassy carbon, the metal platinum, the carbon paste, and the carbon fiber microelectrode were compared with the IPDE in the electrolyte using the standard Co(II). The IPDE was found to be far superior to the others.

Design of Pore and Matter Architectures in Cobalt Oxide Electrode for Supercapacitor (수퍼커패시터용 산화코발트전극의 세공과 재료구조의 설계)

  • Kim, Han-Joo;Shin, Dal-Woo;Kim, Yong-Chul;Kim, Seong-Ho;Park, Soo-Gil
    • Proceedings of the KIEE Conference
    • /
    • 2000.11c
    • /
    • pp.425-427
    • /
    • 2000
  • We describe the preparation of a cobalt oxide in which the solid-pore architecture of the material is controllably varied. All $CoO_2$ gels derived from $CoCl_2$-based sol-gel synthesis, but exhibit markedly different final pore structures based on how the pore fluid is removed from forces that result from extraction are either low or nonexistent. These nanoscale mesoporous materials have higher $CoO_2$ crystallites. Controlling both the pore and solid architecture on the nanoscale offers a strategy for the design of new supercapacitor and charge-storage materials.

  • PDF

Optical Properties of $I^B-AI-VI^B_2$$I^B-AI-VI^B_2 :Co^{2+}$ Crystals ($I^B-AI-VI^B_2$$I^B-AI-VI^B_2 :Co^{2+}$결정의 광학적 특성연구)

  • 김화택;김창대;윤창선;진문석;최성휴
    • Journal of the Korean Vacuum Society
    • /
    • v.4 no.3
    • /
    • pp.334-341
    • /
    • 1995
  • IB-AI-VIB2 및 IB-AI-VIB2 :Co2+ 결정을 고순도 원소를 출발 물질로 하고 iodine을 수송 매체로 사용하여 chemical transport reaction method로 성장시켰다. 성장된 결정의 결정구조는 chalcopyrite 구조였으며, energy gap은 direct band gap으로 3.514~1.814 eV 정도로 주어졌으며, cobalt를 불순물로 첨가할 때 energy gap은 감소하였다. IB-AI-VIB2 :Co2+ 결정에서 첨가된 cobalt가 모체결정의 Td symmetry site에 Co2+ ion으로 위치하여, Co2+ ion의 energy 준위 사이의 전자전이에 기인하는 불순물 광흡수 peaks가 나타났다. 이 불순물 광흡수 peaks에 결정장 이론을 적용하여 구산 1st-order spin-orbit coupling parameter(λ)는 -183~ -189cm-1정도였고, 2nd-order spin-orbit coupling parameter(P)는 225~239 cm-1정도였으며, crystal field parameter(Dq)는 328~395cm-1, Racah parameter(B)는 531~552cm-1정도였다.

  • PDF