• Title/Summary/Keyword: Cobalt(Ⅲ) complex

Search Result 142, Processing Time 0.02 seconds

Studies on The Electrochemical Properties of Oxygen adducts Tetradentate Schiff Base Cobalt(II) Complexes in DMSO (I) (DMSO용액에서 네자리 Schiff Base Cobalt(II) 착물들의 산소 첨가 생성물에 대한 전기화학적 성질에 관한 연구 (제 1 보))

  • Chjo Ki-Hyung;Jin-Soon Chung;Heui-Suk Ham;Seoing-Seob Seo
    • Journal of the Korean Chemical Society
    • /
    • v.31 no.6
    • /
    • pp.542-554
    • /
    • 1987
  • Tetradentate schiff base cobalt(II) complexes; Co(SED), Co(SND) and Co(SOPD) have been prepared, these complexes have react with dry oxygen in DMSO to form oxygen adducts cobalt(III) complexes; $[Co(SED)(DMSO)]_2O_2,\;[Co(SND)(DMSO)]_2O_2$ and $[Co(SOPD)(DMSO)]_2O_2$. It seems to be that the oxygen adducts cobalt(Ⅲ) complexes have heexa coordinated octahedral configration with tetradentate schiff base cobalt (III), DMSO and oxygen, and the mole ratio of oxygen to cobalt(II) complexes are 1 : 2, these complexes have been identified by IR-Spectra, T.G.A., magnetic susceptibilitis and elemental analysis of C.H.N. and Cobalt. The redox reaction process of Co(SED), Co(SND) and Co(SOPD) complexes was investigated by cyclic voltammetry with glassy carbon electrode in 0.1M TEAP-DMSO. The results of redox reaction process of Co(II) / Co(III) and Co(II) / Co(I) for cobalt(SED) and cobalt(SOPD) complexes and Co(II) / Co(III) process for cobalt(SND) complex are reversible process but Co(II) / Co(I) process of Cobalt(SND) complex is irreversible, and oxygen adduct complexes to quasi reversibly with oxygen should be very closed related to the redox potentials of range, $E_{pc}$ = -0.80~-0.89V and $E_{pa}$ = -0.70~-0.76V.

  • PDF

Preparation and Oxygen Binding Properties of Ultra-Thin Polymer Films Containing Cobalt(II) meso-Tetraphenylporphyrin via Plasma Polymerization

  • Choe, Youngson
    • Macromolecular Research
    • /
    • v.10 no.5
    • /
    • pp.273-277
    • /
    • 2002
  • Ultra-thin polymer films containing cobalt(II) meso-tetraphenylporphyrin(CoTPP) have been prepared by vacuum codeposition of the metal complex and trans-2-butene as an organic monomer using an inductively coupled RF glow discharge operating at 7-9 Watts. The polymer films were characterized by sorption measurements. Sorption data obtained for polymer films containing CoTPP indicate that the CoTPP molecules are capable of reversibly binding oxygen molecules. It was found that the adjacent CoTPP molecules in the aggregated metal complex phase could irreversibly share the oxygen molecules. A dispersion of the metal complex molecules in the polymer matrix was made to maintain the reversible reactivity of the metal complex molecules with oxygen in the polymer films via vacuum evaporation process. The Henry mode solubility constant, the Langmuir mode capacity constant, the amount of binding oxygen, and the dissociation equilibrium in the dual mode sorption theory were discussed.

The Oxidation of Hydrazobenzene Catalyzed by Cobalt Complexes in Nonaqueous Solvents

  • Kim, Stephen S.B.;Hommer, Roger B.;Cannon, Roderick D.
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.2
    • /
    • pp.255-265
    • /
    • 2006
  • The oxidation of hydrazobenzene by molecular oxygen in the polar solvent methanol is catalysed by a Schiff's base complex Co(3MeOsalen) which is a synthetic oxygen carrier. The products are trans-azobenzene and water. The rate of the reaction has been studied spectrophotometrically and the rate law established. A mechanism involving a ternary complex of catalyst, hydrazobenzene and molecular oxygen has been proposed. The kinetic studies show that a ternary complex $CoL{\cdot}H_2AB{\cdot}O_2$ is involved in the rate determining step. The reactions are summarised in a catalytic cycle. The kinetic data suggest that a ternary complex involving Co(3MeOsalen), triphenyl-phosphine and molecular oxygen is catalytically acive species but at higher triphenylphosphine concentrations the catalyst becomes inactive. The destruction of the catalytic activity could be due to the catalyst becoming coordinated with triphenyl phosphine at both z axis sites of the complex e.g. Co (3MeOsalen)$(PPh_3)_2$.

Direct and Derivative Spectrophotometric Determination of Cobalt (II) in Microgram Quantities with 2-Hydroxy-3-methoxy Benzaldehyde Thiosemicarbazone (2-Hydroxy-3-methoxy Benzaldehyde Thiosemicarbazone를 사용하여 마이크로 그램 코발트(II)의 직접 및 유도 분광광도법에 의한 정량)

  • Kumar, A.Praveen;Reddy, P.Raveendra;Reddy, V.Krishna
    • Journal of the Korean Chemical Society
    • /
    • v.51 no.4
    • /
    • pp.331-338
    • /
    • 2007
  • A rapid, simple and sensitive spectrophotometric method was developed for the determination of cobalt(II) using 2-hydroxy-3-methoxy benzaldehyde thiosemicarbazone (HMBATSC) as a analytical reagent. The metal ion in aqueous medium forms a brown coloured complex with HMBATSC at pH 6.0. The complex has two absorption maxima at 375 nm and 390 nm. At 375 nm, the reagent shows considerable absorbance, while at 390 nm the reagent does not shows appreciable absorbance. Hence, analytical studies were carried out at 390 nm. Beer's law is obeyed in the range of 0.059-2.357 μg ml-1 of Co(II). The molar absorptivity and Sandall's sensitivity of the method are 2.74×104 l mol-1 cm-1 and 0.0024 μg cm-2 respectively. The interference of various diverse ions has been studied. The complex has 1:2 [Co(II)- HMBATSC] stoichiometry. A method for the determination of cobalt(II) by second order derivative spectrophotometry has also been proposed. The proposed methods were applied for the determination of cobalt(II) in alloy steels, vitamin B12 and in some biological samples.

E-beam Irradiation of Diyne-Cobaltcarbonyl Complexes for the Generation of Conjugated Alkyne in Gas Phase

  • Choi, Jeong-Chul;Hwang, Kwang-Jin
    • Rapid Communication in Photoscience
    • /
    • v.4 no.4
    • /
    • pp.86-87
    • /
    • 2015
  • Substituted butadiyne cobalt complexes 1, 2 were prepared and placed on the e-beam to study the fragmentation focused on diyne generation, in MS spectrometer. Phenyl or methyl substituted cobalt complexes generated the corresponding diyne with 100, 30% relative intensities under e-beam irradiation in gas phase.

Selective Oxidation of 2,6-di-tert-butylphenol and Electrochemical Properties by Oxygen Adducted Tetradentate Schiff Base Cobalt (Ⅲ) Activated Catalysts in Aprotic Solvents (비수용매에서 산소 첨가된 네자리 Schiff Base Cobalt(Ⅲ) 활성 촉매들에 의한 2,6-di-tert-butylphenol의 선택 산화와 전기화학적 성질)

  • Jo, Gi Hyeong;Choe, Yong Guk;Ham, Hui Seok;Kim, Sang Bok;Seo, Seong Seop
    • Journal of the Korean Chemical Society
    • /
    • v.34 no.6
    • /
    • pp.569-581
    • /
    • 1990
  • It is generated in DMF by activated catalysts of superoxo cobalt(III) complex, such as [Co(III)(Schiff base)(L)]O$_2$ (Schiff base; SED, SOPD and o-BSDT, L; DMF and Py) which mole ratio of oxygen to metal is 1:1 that oxidation major product of 2,6-di-tert-butylphenol by homogeneous oxidatve catalysts of oxygen adducted tetradentate Schiff base cobalt(III) is 2,6-ditert-butylbenzoquinone (BQ). And oxidation product of 3,3',5,5'-tetra-tert-butyldiphenoquinone (DPQ) is generated by activated catalysts such as $\mu$-peroxo cobalt(III) complex; $[Co(III)(SND)(L)]_2$$O_2$ (L; DMF and Py) which mole ratio of oxygen to metal is 1:2. It is difficult to identify these homogeneous activated catalysts such as superoxo and $\mu$-peroxo cobalt(III) complexes in DMF and DMSO solvents. But we can identify by P.V.T method of the oxygen absorption in pyridine solvent and by the reduction process occurred to four steps including prewave of O$_2$- in 1:1 oxygen adducted superoxo cobalt(III) complexes and three steps not including prewave of O$_2$- in 1:2 oxygen adducted $\mu$-peroxo cobalt(III) complexes by the cyclic voltammetry with glassy carbon electrode in 0.1 M TEAP as supporting electrolyte solutidn.

  • PDF

Cobalt(Ⅲ) Complexes of N,N'-Bis(2(S)-aminopropyl)-1(R),2(R)-trans-1,2-diaminocyclohexane

  • 이동일;전무진
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.9
    • /
    • pp.786-790
    • /
    • 1996
  • A novel optically active tetraamine ligand possessing four asymmetric centers, N,N'-bis(2(S)-aminopropyl)-1(R),2(R)-trans-1,2-diaminocyclohexane (SRRS-apchxn) and its cobalt(Ⅲ) complexes, [Co(SRRS-apchxn)X2]n+ (X=Cl-, H2O, X2=CO32-) have been synthesized. This ligand has coordinated stereospecifically to the cobalt(Ⅲ) ion to give only the Λ-uns-cis-(SS) isomer. A trans dichloro complex has been obtained via the stereospecific isomerization of Λ-uns-cis-(SS)-[Co(SRRS-apchxn)Cl2]+ to trans-(SS)-[Co(SRRS-apchxn) Cl2]+ in CH3OH-HCl medium. Ligand and complexes have been characterized by electronic absorption, 1H NMR, CD spectra, and also by elemental analysis. It is of interest that this is one of the few CoⅢ(N4)X2 type complex preparations, which produces such an uns-cis isomer with stereospecificity.

The Stereochemistry of the Metal Complexes of Novel Stereospecific Quadridentate Ligands, Cobalt(Ⅲ) Complexes of N,N$^\prime$-dimethylethlenediamine-N,N$^\prime$-di-$\alpha$-propionato and N,N$^\prime$-dimethlethylenediamine-N,N$^\prime$-diacetato Ligands

  • Jun, Moo- Jin;Jung, Jin- Seung;Kim, Chang-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.6 no.6
    • /
    • pp.369-374
    • /
    • 1985
  • A new flexible quadridentate ligand, N,N'-dimethylethylenediamine-N,N'-di-${\alpha}$-propionic acid (dmedpa) has been synthesized, and diammine and ethylenediamine cobalt(III) complexes of dmedpa, $[Co(dmedpa)(NH_3)_2]^+$ and $[Co(dmedpa(en)]^+,$ have been prepared. Only s-cis isomer has been yielede. A known N,N'-dimethylethylediamine-N,N'-diacetic acid (dmedda) has also been prepared. Dichloro cobalt(III) complexes of both dmedda and dmedpa have been prepared. Only the s-cis isomer has been yielded in the $[Co(dmedda)Cl_2]^-$ complex, while only the uns-cis isomer has been obtained for the $[Co(dmedpa)Cl_2]^-$ complex.