• Title/Summary/Keyword: Coaxial fluid conduit

Search Result 2, Processing Time 0.015 seconds

The Performance Simulation of All-Glass Vacuum Tubes with Coaxial Fluid Conduit (등축 유로를 가진 이중진공관형 태양열 집열기의 열성능에 관한 시뮬레이션 연구)

  • Lee, Sang-Jin;Hyun, Myung-Taek;Park, Youn-Cheol;Chun, Won-Gee;Lee, Jung-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.24 no.3
    • /
    • pp.27-38
    • /
    • 2004
  • A numerical investigation has been carried out for a solar system, which consists of all glass solar vacuum tubes Water is heated as it flows through the coaxial fluid conduit inserted in each tube. The space between the exterior of the fluid conduit and the glass tube is filled with antifreeze solution. This is to facilitate heat transfer from the solar heated absorber surface to water and to prevent the functional problems due to freezing in frigid weather conditions. A one-dimensional steady state model is fully described which will be used to develop three-dimensional model using STAR-CD. These models could be used efficiently in designing all-glass solar collector tubes with different geometrical parameters other than those considered in the present analysis. Results show good agreement when compared with other experimental data demonstrating the reliability of the present model.

A Numerical Study on the Thermal Characteristics of Double Skin Vacuum Tubes with Coaxial Fluid Conduit (등축 유로 장착 이중 태양열 진공관의 열적 특성에 관한 수치해석적 연구)

  • Hyun, Jun-Ho;Park, Youn-Cheol;Chun, Won-Gee;Lee, Sang-Jin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.567-570
    • /
    • 2006
  • A numerical study has been carried out for a solar water heater which consists of double skin solar vacuum tubes. Water is heated as it flows through the coaxial fluid conduit inserted in each tube. The space between the exterior of the fluid conduit and the glass tube is tilled with antifreeze solution. This is to facilitate heat transfer from the solar heated absorber surface to water and to prevent the functional problems due to freezing in frigid weather conditions. A one-dimensional steady state model is fully described which will be used to develop three-dimensional model using STAR-CD. These models could be used efficiently in designing double skin solar collector tubes with different geometrical parameters other than those considered in the present analysis. Results show a good agreement when compared with other experimental data demonstrating the reliability of the one-dimensional model employed.

  • PDF