• Title/Summary/Keyword: Coaxial Jet

Search Result 109, Processing Time 0.025 seconds

The Effect of Flame Radiation on NOx Emission Characteristics in Hydrogen Thrbulent Diffusion Flames (수소 난류확산화염에서 NOx 생성특성에 대한 화염열복사의 영향)

  • Kim, Seung-Han;Kim, Mun-Ki;Yoon, Young-Bin
    • Journal of the Korean Society of Combustion
    • /
    • v.5 no.2
    • /
    • pp.51-62
    • /
    • 2000
  • The relationship among the flame radiation, NOx emissions, residence time, and global strain rate are examined for turbulent non-premixed jet flames with wide variations in coaxial air conditions. Measurements of NOx emission, flame geometry and flame radiation were made to explain the NOx emission scaling based on global parameters such as flame residence time, global strain rate, and radiant fraction. The overall 1/2-power scaling is observed in coaxial air flames, irrespective of coaxial air conditions, but the degree of deviation from the 1/2-slope curve in each case differs from one another. From the comparison between the results of pure hydrogen flames and those of helium diluted hydrogen flames, it is observed that flame radiation plays a significant role in pure hydrogen flames with coaxial air and the deviation from 1/2-power scaling may be explained in two reasons: the difference in the flame radiation and the difference in jet similarity in coaxial air flames. From the radiation measurements, more detailed explanations on these deviations were suggested.

  • PDF

Characteristics of Stabilization Point in Lifted Turbulent Hydrogen Diffusion Jet with Coaxial Air (부상된 동축공기 수소 난류확산화염에서의 화염안정화 특성)

  • Oh, Jeong-Seog;Kim, Mun-Ki;Yoon, Young-Bin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.4
    • /
    • pp.352-356
    • /
    • 2008
  • In this study of lifted hydrogen jet with coaxial air, we have experimentally studied the characteristics of stabilization point in turbulent diffusion flames. The objectives are to present the phenomenon of a liftoff height decreasing as increasing fuel velocity and to analyse the flame structure and behavior including liftoff mechanisms. The fuel jet exit velocity was changed from 100 up to 300 m/s and a coaxial air velocity was fixed at 16 m/s with a coflow air less than 0.1 m/s. For the simultaneous measurement of velocity field and reaction zone, PIV and OH PLIF technique was used with two Nd:Yag lasers and CCD cameras. It has been suggested that the stabilization of lifted hydrogen diffusion flames was correlated with a turbulent intensity, $S_t{\sim}u^{\prime}$, and jet Reynolds number, $S_t{\sim}Re^{0.017}_{jet}$.

An Experimental Study of Under-Expanded Coaxial, Swirling Jets (부족팽창 동축 스월 제트유동 특성에 관한 실험적 연구)

  • Kim, Jung-Bae;Lee, Kwon-Hee;Setoguchi, Toshiaki;Kim, Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.580-585
    • /
    • 2003
  • The present study addresses experimental results to investigate the details of the near field flow structures produced in the under-expanded, dual, coaxial, swirling, jet. The sonic/supersonic swirling jets are emitted from the sonic inner nozzle and the outer annular nozzle produce the co-swirling and counter swirling against the primary swirling jet, respectively. The interactions between both the secondary annular swirling and primary inner supersonic swirling jets are quantified by the pitot impact and static pressure measurements and visualized by using the Schliern optical method. The experiment is performed for different swirl intensity and pressure ratio. The results obtained show that the secondary co-swirling jet significantly changes the inner under-expanded swirling jet, such as the recirculation zone, pressure distribution, through strong interactions between both the swirling jets and the effects of the secondary counter-swirling jet is similar to the secondary co-swirl jet case.

  • PDF

An Experimental Study on Flame Structure and Combustion Characteristics of Turbulent Diffusion Flame(I) (난류확산화염의 화염구조와 연소특성에 관한 실험적 연구)

  • Choe, Byeong-Ryun;Jang, In-Gap;Choe, Gyeong-Min
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.3
    • /
    • pp.1028-1039
    • /
    • 1996
  • This study was focused on the examination of the flame structure and the combustion characteristics of diffusion flame which was formed the turbulent shear flow of a double coaxial air jet system. The shear flow was formed by the difference velocity of surrounding air jet(U$\_$s/) and center air jet (U$\_$c/). So experimental condition was divided S-type flame (.lambda. > 1) and C-type flame (.lambda. < 1) by velocity ratio .lambda. (=U$\_$s//U$\_$c/). For examination of the flame structure and the combustion characteristics in diffusion flame, coherent structure was observed in flame by schlieren photograph method. We measured fluctuating temperature and ion current simultaneously and accomplished the statistical analysis of its. According to schlieren photograph, the flame was stabilized in the rim of the direction of lower velocity air jet, coherent eddy was produced and developed by higher velocity air jet. The statistical data of fluctuating temperature and ion current was indicated that reaction was dominated by higher velocity air jet. The mixing state of burnt gas and non-burnt gas was distributed the wide area at Z = 100 mm of C-type flame.

Spray characteristics of liquid-swirl/gas-jet coaxial injectors (액체스월-기체제트 동축 분사기의 분무특성)

  • Jeon, Jae-Hyoung;Hong, Moon-Guen;Kim, Jong-Gyou;Han, Yeoung-Min;Lee, Soo-Yong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.82-85
    • /
    • 2009
  • In the development of Liquid Rocket Engine(LRE) systems, it is essential to understand the spray characteristics which influence mainly the performance and the stability of combustion. The injectors for this study have a recessed Liquid-swirl/Gas-centered jet coaxial type. For the similarity with actual conditions, the experimental conditions are calculated by using the momentum ratio as a matching parameter, and the stimulants of fuel and oxidizer are gaseous nitrogen and water respectively. The spray fields were measured by means of a photographic technique. Moreover, an effect of the momentum ratio has been investigated.

  • PDF

Effect of Oxygen Enriched Air on the Combustion Characteristics in a Coaxial Non-Premixed Jet (II) - Flame Structure and Temperature Distribution - (산소부화공기가 동축 비예혼합 제트의 연소특성에 미치는 영향 (II) - 화염의 구조와 온도분포 -)

  • Kwark, Ji-Hyun;Jeon, Chung-Hwan;Jang, Young-June
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.2
    • /
    • pp.223-229
    • /
    • 2004
  • Combustion using oxygen enriched air is known as a technology which can increase thermal efficiency due to increase of the flame temperature. Flame shapes, schlieren photos, OH radical chemiluminescence and local flame temperature were examined as a function of OEC(Oxygen Enriched Concentration) in a coaxial non-premixed jet. With increase of OEC, flame length and width decreased, but its brightness increased significantly, and the size of vortices in the flame also increased. Especially, the reaction around the flame surface became active. The strong OH intensity appeared to be made and moved from middle stream to upper one with increase of OEC, which shows combustion reaction in the upper stream becomes more dominant In addition, the temperature distributions of the flames showed similar tendency with OH radical intensities. A flame with high temperature and strong stability was obtained with increasing OEC of the coflow.

Influence of Thermodynamic Properties upon Transcritical Nitrogen Injection

  • Tani, Hiroumi;Teramoto, Susumu;Nagashima, Toshio
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.320-329
    • /
    • 2008
  • The influence of thermodynamic transition associated with transcritical nitrogen injection upon the flow structure was investigated to explore numerical simulation of the injectant dynamics of oxygen/hydrogen coaxial jet in liquid rocket engines. Single and coaxial nitrogen jets were treated by comparing the transcritical and perfect-gaseous conditions, wherein the numerical model was accommodative to the real-fluid thermodynamics and transport properties at supercritical pressures. The model was in the first place validated by comparing the results of transcritical nitrogen injection between calculations and available experiments. For a single jet under the transcritical condition, the nitrogen kept a relatively high density up to its pseudo-critical temperature inside the mixing layer, since it remains less expanding until heated up to its pseudo-critical temperature. Numerical analysis revealed that cryogenic jets exhibit strong dependence of specific enthalpy profile upon the associated density profile that are both dominated by turbulent thermal diffusion. In the numerical model, therefore, exact evaluation of turbulent heat fluxes becomes very important for simulating turbulent cryogenic jets under supercritical pressures. Concerning the coaxial jets due to transcritical/gaseous nitrogen injections, the density profile inside the mixing layer was again affected by the thermodynamic transition of nitrogen. However, hydrodynamic instability modes of the inner jet did not show significant differences by this thermodynamic transition, so that further study is needed for the mixing process downstream of the near injection position.

  • PDF

Disintegration Mechanism of a Coaxial Porous Injector (동축형 다공성재 분사기의 분열 메커니즘)

  • Lee, Keonwoong;Kim, Dohun;Son, Min;Koo, Jaye
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.2
    • /
    • pp.39-45
    • /
    • 2016
  • In a coaxial porous injector, a gas propellant is injected through the porous cylinder surface to the liquid jet which is encircled by a porous cylinder. In this study, to observe the differences in disintegration mechanisms between a shear coaxial injector and a coaxial porous injector, cold-flow tests and 2-D axisymmetric numerical analysis have been carried out. The shadowgraph images and Sauter mean diameters were compared in similar experimental conditions, and the effects of velocity distributions at the inner injector region on the disintegration of liquid jet were investigated through the numerical calculations. As a result, in high air mass flow rate condition, the disintegration performance of coaxial porous injector is better than shear coaxial injector, in spite of a lower velocity at the inner injector region.

Blow-off and Combustion Characteristics of a Lifted Coaxial Diffusion Flame (동축 확산 부상화염의 Blow-off와 연소 특성)

  • Kwark, Ji-Hyun;Jun, Chung-Hwan;Jang, Young-June
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.8
    • /
    • pp.1089-1096
    • /
    • 2003
  • An experiment was performed to investigate lift-off, blow-off and combustion characteristics of a lifted coaxial diffusion flame according to fuel jet and air velocity. A jet diffusion flame which is attached on the nozzle rim begins to be lifted with increase of air velocity, and finally becomes blow-off at higher air velocity. In experiment, blow-off limit increased with increase of fuel jet velocity, however lift-off occurred at lower air velocity. Flame structure and combustion characteristics were examined by schlieren photos, temperature distributions and emission concentration distributions. Flame temperature became higher at midstream and its RMS became larger at up and downstream with increase of air velocity. Local NO concentration decreased but $CO_2$concentration increased with increase of air velocity, which shows combustion reaction becomes close to be stoichiometric at higher air velocity in spite of lift-off.