• 제목/요약/키워드: Coaxial Heat Exchanger

검색결과 9건 처리시간 0.028초

지중열교환기의 종류에 따른 열전달 성능에 관한 연구 (A study on the Heat Transfer Performance according to Ground Heat Exchanger Types)

  • 황석호;송두삼
    • KIEAE Journal
    • /
    • 제10권4호
    • /
    • pp.75-80
    • /
    • 2010
  • Generally, ground-source heat pump (GSHP) systems have a higher performance than conventional air-source systems. However, the major fault of GSHP systems is their expensive boring costs. Therefore, it is important issue that to reduce initial cost and ensure stability of system through accurate prediction of the heat extraction and injection rates of the ground heat exchanger. Conventional analysis methods employed by line source theory are used to predict heat transfer rate between ground heat exchanger and soil. Shape of ground heat exchanger was simplified by equivalent diameter model, but these methods do not accurately reflect the heat transfer characteristics according to the heat exchanger geometry. In this study, a numerical model that combines a user subroutine module that calculates circulation water conditions in the ground heat exchanger and FEFLOW program which can simulate heat/moisture transfer in the soil, is developed. Heat transfer performance was evaluated for 3 different types ground heat exchanger(U-tube, Double U-tube, Coaxial).

$CO_2$ 열펌프용 내부 열교환기의 냉방조건에서 열전달 및 압력 강하 특성에 대한 연구 (Study on Heat Transfer and Pressure Drop Characteristics of Internal Heat Exchanger for $CO_2$ Heat Pump under Cooling Condition)

  • 김대훈;이상재;최준영;이재헌;권영철
    • 설비공학논문집
    • /
    • 제20권8호
    • /
    • pp.517-525
    • /
    • 2008
  • In order to study the heat transfer and pressure drop of an internal heat exchanger for $CO_2$ heat pump under cooling condition, the experiment and numerical analysis were performed. Four kinds of internal heat exchangers with a coaxial tube type and a micro-channel tube type were used. The experimental apparatus consisted of a test section, a power supply, a heater, a chiller, a mass flow meter, a pump and a measurement system. The section-by-section method and Hardy-Cross method were used for the numerical analysis. The effects of the internal heat exchanger refrigerant flow rate, the length of the internal heat exchanger, the operating condition of the gas-cooler, the evaporator and the type of the internal heat exchangers were investigated. With increasing of the flow rate, the heat transfer rate increased about 25%. The heat transfer rate of the micro-channel tube type was higher about 100% than that of the coaxial tube type. With increasing of the length of the internal heat exchanger, the heat transfer rate increased about $20{\sim}50%$. The pressure drop of the low-side tube was larger compared with that of the high-side tube.

이중관형 지중열교환기 구성에 따른 현장 열성능 평가 (Evaluation on in-situ Thermal Performance of Coaxial-type Ground Heat Exchanger with Different Configurations)

  • 이석재;정현석;오광근;박상우;최항석
    • 한국지열·수열에너지학회논문집
    • /
    • 제15권4호
    • /
    • pp.8-15
    • /
    • 2019
  • In order to design coaxial-type Ground Heat Exchangers (GHEXs) efficiently, the effect of components (i.e, heat exchange pipe and grouting material) on the thermal performance of coaxial-type GHEXs should be identified in advance. In this paper, three coaxial-type GHEXs with different configurations were constructed in a test bed. Then, the effect of heat exchange pipes and grouting materials on the thermal performance of coaxial-type GHEXs was investigated by performing in-situ thermal response tests (TRTs) and thermal performance tests (TPTs). In the TRTs, the effective thermal conductivities of the coaxial-type GHEXs with concrete grouting and STS pipes were improved by 6.15 and 22.7%, respectively compared to those of bentonite grouting and HDPE pipes. Additionally, in the TPTs, the use of concrete grouting and STS pipes in the coaxial-type GHEXs enhanced the in-situ thermal performance by 15 and 33.8%, respectively.

천임계 $CO_2$ 시스템용 코일형 내부 열교환기의 열성능 해석 (Thermal Performance Analysis of Circular Coil Type Internal Heat Exchanger for Transcritical $CO_2$ System)

  • 박병규;김근오;김무근
    • 설비공학논문집
    • /
    • 제14권7호
    • /
    • pp.531-542
    • /
    • 2002
  • Transcritical$CO_2$ systems are under consideration for use as residential/mobile air conditioners. In these systems, an internal heat exchanger is usually adopted to improve both capacity and/or COP of the $CO_2$ system in lower operating pressure range of gas cooler. A program has been developed to analyse the performance of internal heat exchangers using the section-by-section method. The internal heat exchanger of coaxial configuration is first analyzed and fairly good agreements with the data are obtained, And then the internal heat exchanger of multiple circular coil configuration has been investigated. The results obtained from the parametric study provide the guidelines for the initial design and manufacturing concepts of the internal heat exchanger in transcritical $CO_2$ system. Further studies are necessary to develop the heat transfer correlations of carbon dioxide in the tubes to obtain more accurate results.

지하수정호와 결합한 복합지열시스템의 열교환 효율에 대한 실험적 연구 (Experimental Study on Heat Exchange Efficiency of Combined Well & Open-Closed Loops Geothermal System)

  • 송재용;이근춘;박남서
    • 대한건축학회논문집:구조계
    • /
    • 제34권5호
    • /
    • pp.43-50
    • /
    • 2018
  • The temperature of underground water generally remains constant regardless of the season. therefore, it is possible to get plenty of energy if we use characteristics of underground water for both cooling and heating. This study evaluates efficiency of real size coaxial and U-tube type complex geothermal system which is combined with underground water well. This study also evaluates relative efficiency/adaptability through comparison with existing geothermal systems(vertical closed loop system, open loop system(SCW)). The heat exchange capacity of complex geothermal system according to temperature difference between circulating water and underground water shows very high significance by increasing proportionally. The temperature change of underground water according to injection energy, shows very high linear growth aspect as injection thermal volume heightens. As a result of evaluation of heat exchange volume between complex geothermal system and comparative geothermal system, coaxial type has 26.1 times greater efficiency than comparative vertical closed type and 2.8 times greater efficiency than SCW type. U-tube type has 26.5 tims greater efficiency than comparative vertical closed type and 2.8 times greater than SCW type as well. This means complex geothermal system has extremely outstanding performance.

초고온가스로의 동심축 이중관형 고온가스덕트에 대한 구조정산 방법론 제안 (Suggestion of Structural Sizing Methodology on a Coaxial Double-tube Type Hot Gas Duct for the VHTR)

  • 송기남;김용완
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.717-724
    • /
    • 2008
  • Very High Temperature Gas Cooled Reactor (VHTR) has been selected as a high energy heat source for nuclear hydrogen generation, which can produce hydrogen from water or natural gas. A primary hot gas duct (HGD) as a coaxial double-tube type cross vessel is a key component connecting the reactor pressure vessel and the intermediate heat exchanger for the VHTR. In this study, structural sizing methodology for the primary HGD with a coaxial double-tube of the VHTR that produces heat at temperatures in the order of $950^{\circ}C$ was suggested and a structural pre-sizing of it was carried out as an example.

  • PDF

외부유로 내벽에 설치된 핀 형상에 따른 이중관 열교환기의 열전달 및 유동에 대한 수치해석적 연구 (A Numerical Study on Heat Transfer and Flow Characteristics of a Finned Downhole Coaxial Heat Exchanger)

  • 박천동;이동현;박병식;최재준
    • 대한기계학회논문집B
    • /
    • 제41권2호
    • /
    • pp.79-86
    • /
    • 2017
  • 본 연구에서는 이중관 지중열교환기의 내부에 삽입되는 유로의 외벽에 설치된 핀 형상에 따른 유동 및 열전달 특성의 변화를 수치해석적으로 분석하였다. 해석에는 상용 CFD 소프트웨어인 Ansys Fluent를 이용하였으며, SST $k-{\omega}$ 난류 모델을 적용하였다. 지중열교환기의 성능을 높일 수 있는 핀의 형상을 찾기 위하여 핀의 각도($15^{\circ}$, $30^{\circ}$, $45^{\circ}$, $60^{\circ}$), 높이비(0.1, 0.3, 0.5), 그리고 핀 간의 간격비(1, 3, 5)를 변화시키며 해석을 수행하였다. 그 결과 핀의 각도와 높이가 증가하면서 대부분의 핀 형상에서 외각유로의 외벽과 내벽에서 Nusselt 수가 증가하는 경향이 나타났다. 하지만 핀 각도 $15^{\circ}$, 높이 비 0.3 이하의 형상에서 핀이 설치되지 않은 경우보다 외벽의 열전달계수는 증가하며 내벽의 열전달 계수가 감소하는 결과를 관찰하였다. 또한 핀 간의 간격이 감소할 경우 외벽의 열전달계수는 큰 변화가 없으나 내벽의 열전달계수는 감소하는 경향이 나타났다.

동심축 이중관 구조에서 유동기인진동 특성 고찰 (Investigation of FIV Characteristics on a Coaxial Double-tube Structure)

  • 송기남;김용완;박상철
    • 대한기계학회논문집A
    • /
    • 제33권10호
    • /
    • pp.1108-1118
    • /
    • 2009
  • A Very High Temperature Gas Cooled Reactor (VHTR) has been selected as a high energy heat source of the order of $950^{\circ}C$ for nuclear hydrogen generation, which can produce hydrogen from water or natural gas. A primary hot gas duct (HGD) as a coaxial double-tube type cross vessel is a key component connecting a reactor pressure vessel and an intermediate heat exchanger in the VHTR. In this study, a structural sizing methodology for the primary HGD of the VHTR is suggested in order to modulate a flow-induced vibration (FIV). And as an example, a structural sizing of the horizontal HGD with a coaxial double-tube structure was carried out using the suggested method. These activities include a decision of the geometric dimensions, a selection of the material, and an evaluation of the strength of the coaxial double-tube type cross vessel components. Also in order to compare the FIV characteristics of the proposed design cases, a fluid-structure interaction (FSI) analysis was carried out using the ADINA code.

난방운전 조건하에서 $CO_2$ 열펌프용 내부 열교환기의 열전달 특성에 대한 연구 (Study on Heat Transfer Characteristics of Internal Heat Exchanger for $CO_2$ Heat Pump under Heating Operating Condition)

  • 김대훈;이상재;최준영;이재헌;권영철
    • 에너지공학
    • /
    • 제17권2호
    • /
    • pp.116-123
    • /
    • 2008
  • 본 연구에서는 $CO_2$ 열펌프에 사용되는 내부 열교환기를 난방조건에서 운전할 경우, 실험 및 수치적 방법으로 열전달량, 효율, 압력강하 등을 관찰하였다. 4가지 종류의 내부 열교환기를 사용하였다. 수치 해석은 단면분할법과 하디크로스 방법을 이용하여 유량, 길이, 운전조건, 내부 열교환기 종류에 따른 영향을 분석하고 실험을 통해 확인하였다. 유량이 증가함에 따라 열전달량이 약 25% 향상되었다. 마이크로 채널이 동심관에 비해 열전달량이 약 100% 크게 나타났다. 길이가 증가함에 따라 열전달 증가율은 감소하였다. 압력강하는 고압측에 비해 저압측이 크게 나타났으며, 동심관에 비해 마이크로 채널이 약 100% 크게 나타났다. 고온입구조건이 증가할수록, 저온입구조건이 감소할수록 열전달량은 약 3% 증가하였다. $CO_2$의 열전달 계산의 정확성을 위해 $CO_2$의 특성과 관형상을 고려할 수 있는 열전달 상관식의 개발이 필요하다.