• Title/Summary/Keyword: Coating tool

Search Result 198, Processing Time 0.025 seconds

Estimation of Nanomechanical Properties of Nanosurfaces Using Phase Contrast Imaging in Atomic Force Microscopy (원자력현미경의 위상차영상을 이용한 나노표면의 미소기계적 특성 평가)

  • Ahn, Hyo-Sok
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.5
    • /
    • pp.115-121
    • /
    • 2007
  • Phase contrast imaging in atomic force microscopy showed a promise as an effective tool for better understanding of micromechanical properties of surfaces at nano scale. A qualitative estimation model for phase contrast images obtained with a tapping mode AFM was developed. This investigation demonstrated the high efficiency of combined analysis of topography and phase contrast images for characterizing nanosurfaces. Phase contrast images allowed estimation of relative stiffness(elastic modulus) of the sample surface. The phase contrast images revealed a significant inhomogeneity of the nano scale worn surfaces. Phase contrast images are also capable of revealing the formation of tribofilms.

A Study on the Wear Characteristics of the Ball End Mill According to the AlTiN Coated Layers (AlTiN 코팅 층수에 따른 볼 엔드밀의 마모특성에 관한 연구)

  • Cho, Gyu-Jae;Lee, Seung-Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.8
    • /
    • pp.54-61
    • /
    • 2010
  • In this research KP-4, one of the plastic mold steels, was coated with the AlTiN from one layer to four layers by the PVD method in the $\Phi$ cemented carbide ball end mill. Coated KP-4 was processed with various conditions. For example, slope of $15^{\circ}$, $30^{\circ}$ and $45^{\circ}$ the spindle rotation speed was changed from 10,000rpm to 16,000rpm, the tool feeding speed was changed from 1,300mm/min to 1,700mm/min, the depth of cut was also changed from 0.3mm to 0.9mm, and etc. Cutting component force according to the coating layer number, surface roughness, and the wear of tool were studied.

Target Strength Prediction of Scaled Model by the Kirchhoff Approximation Method (Kirchhoff 근사 방법을 이용한 축소모델의 표적강도 예측)

  • 김영현;주원호;김재수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.442-445
    • /
    • 2004
  • The acoustic target strength (TS) of submarine is associated with its active detection, positioning and classification. That is, the survivability of submarine depends on its target strength. So it should be managed with all possible means. An anechoic coating to existing submarine or changing of curvature can be considered as major measures to reduce the TS of submarine. It is mainly based on the prediction of its TS. Under this circumstances, a study on the more accurate numerical methods becomes big topic for submarine design. In this paper, Kirchhoff approximation method was adopted as a numerical tool for the physical optics region. Secondly, the scaled models of submarine were built and tested in order to verify its performance. Through the comparison, it was found out that the Kirchhoff approximation method could be good design tool for the prediction of TS of submarine.

  • PDF

The Research of Scratch Characteristics For Non-Vinyl Pre-Coated Metal Sheet (Non-Vinyl Pre-Coated Metal의 스크래치 특성에 관한 연구)

  • 김동환;조형근;김병민
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.874-877
    • /
    • 2000
  • Pre-coated sheet materials are a cost-effective and environmentally attractive alternative to conventional sheet materials coated after forming. At present but the high scratch sensitivity of coating used for pre-coated metal sheet is a major limitation to use of these materials. Because of high scratch sensitivity, products made by pre-coated metal sheet are not formed by conventional design method. This study has been performed to investigate scratch characteristic of non-vinyl pre-coated metal (PCM) sheet. Using the simple U-bending test equipment, three non-vinyls PCM's were tested. This paper provides the results of bending tests showing the influence of sheet surface texture, tool material and process conditions. It was found that the influence of punch, die clearance and tool material had an effect upon the scratch characteristic.

  • PDF

A Study on the Machining Characteristics of Tool Material for Cold Forging (냉간단조용 금형강의 절삭특성에 관한 연구)

  • Choi, W.S.;Nam, J.H.;Kang, C.W.;Kin, W.G.;Lee, I.;Kwon, J.R.;Park, S.Y.;Mun, H.J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.135-138
    • /
    • 2009
  • In this study we investigate the machining characteristics of tool material for cold forging by using the machining center. The test was in the SKD62 cold forging material by 2-edge endmill with cutting fluid. The coating conditions are depth of cut 1,2,3mm. WC-endmill, federate 20mm/min, cutting velocity 20m/min. The surface roughness increase as the depth of cut increase. Also cutting force increase whiles the depth of cut increase.

  • PDF

Development of Air-powered Handpiece for Surgical Operation (외과 수술용 Air-Powered Handpiece 개발)

  • 윤길상;이영훈;허영무;서태일;최길운
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.3
    • /
    • pp.188-193
    • /
    • 2004
  • The purpose of this paper is concerned with a development of an air-powered handpiece for surgical operation. The handpiece is the tool of surgical instruments and it can be used to interchange multiple attachments for drilling, pinning, sawing, driving screws and reaming. Most of domestic medical instruments bring in overseas and the air-powered handpiece imported from foreign countries at 100% too. Therefore we develop new air powered handpiece. we research in 2D and 3D modeling, design of air line, analyze structure. The air-powered handpiece composes of body, power supply air-line, elements for mechanical power transmission, attachment, and surgical tools. The handpiece is developed by several processes that 3D design, machining, heat treatment and coating. The developed handpiece is experimented to confirm check the efficiency.

Trends of Plasma Coating Technology and Its Application (플라즈마 코팅의 최신 기술동향과 응용)

  • Jeong, Jae-In;Yang, Ji-Hun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.103.1-103.1
    • /
    • 2016
  • 플라즈마 코팅은 진공 및 진공에서 발생된 플라즈마 대기압 플라즈마를 이용하여 기판에 코팅하는 기술을 의미하는 것으로 최근 다양한 코팅 소스 및 물질계가 개발되면서 그 응용을 넓혀가고 있다. 플라즈마 코팅은 물리증착 및 화학증착에서 주로 이용하고 있는데 플라즈마를 이용하는 대표적인 기술로 스퍼터링과 음극아크증착, 플라즈마 화학증착 등이 있다. 스퍼터링은 기존의 마그네트론 스퍼터링에 비해 이온화율이 대폭 향상된 HIPIMS(High Power Impulse Magnetron Sputtering) 기술이 개발되면서 경질피막 제조의 신기술로 자리 잡고 있고 음극아크증착의 경우는 다양한 Filtered 아크소스가 개발되면서 후막 고경도 DLC(Diamond-like Carbon) 등 기존의 방법으로 달성할 수 없었던 코팅층의 제조가 가능하게 되었다. 최근 수명 및 물성이 크게 향상된 소재들이 다양하게 개발되었는데 이들 소재는 가공이 잘 되지 않는 난삭재가 대부분이어서 기존의 가공 Tool이 한계를 드러내고 있다. 이에 따라 난삭재 가공용 새로운 Tool에 대한 수요가 크게 증가하고 있는데 이에 대응하는 유력한 방법 중의 하나가 플라즈마를 이용한 경질코팅이다. 이렇듯 플라즈마 코팅은 난삭재가공용 Tool을 비롯하여 기계나 자동차 부품의 고경도, 저마찰 코팅, 기능성 코팅 등 다양한 분야에 응용을 확대하고 있다. 본 논문에서는 플라즈마 코팅의 최신 기술개발 동향과 그 응용에 대해 고찰하고자 한다.

  • PDF

CFD Analysis on Flow Characteristics of Oil Film Coating Nozzle (유막 코팅 노즐의 유동특성에 관한 CFD해석)

  • Jung, Se-Hoon;Ahn, Seuig-Ill;Shin, Byeong-Rog
    • The KSFM Journal of Fluid Machinery
    • /
    • v.11 no.5
    • /
    • pp.50-56
    • /
    • 2008
  • Metal cutting operations involve generation of heat due to friction between the tool and the pieces. This heat needs to be carried away otherwise it creates white spots. To reduce this abnormal heat cutting fluid is used. Cutting fluid also has an important role in the lubrication of the cutting edges of machine tools and the pieces they are shaping, and in sluicing away the resulting swarf. As a cutting fluid, water is a great conductor of heat but is not stable at high temperatures, so to improve stability an emulsion type mixed fluid with water and oil is often used. It is pumped over the cutting site of cutting machines as a state of atomized water droplet coated with oil by using jet. In this paper, to develop cutting fluid supplying nozzle to obtain ultra thin oil film for coating water droplet, a numerical analysis of three dimensional mixed fluid Jet through multi-stage nozzle was carried out by using a finite volume method. Jet flow characteristics such as nozzle exit velocity, development of mixing region, re-entrance and jet intensity were analyzed. Detailed mixing process of fluids such as air, water and oil in the nozzle were also investigated. It is easy to understand complex flow pattern in multi-stage nozzle. Important flow Information for advance design of cutting fluid supplying nozzle was drawn.

Investigation of Dispersion Stability of Conductive Nano Ink Using 1-Octanethiol Coated Copper Nano Powders (1-Octanethiol이 코팅된 나노 구리 분말을 이용한 나노 잉크의 분산도에 대한 연구)

  • Cho, Danee;Baik, Jong-Hwan;Park, Joong-Hark;Lee, Caroline Sunyong
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.5
    • /
    • pp.417-422
    • /
    • 2012
  • Copper nano particles have been considered as the materials for conductive ink due to its good thermal, electrical conductivity and low cost. However, copper nanoparticles oxidize easily, decreasing dispersion stability and electrical conductivity. Therefore, it is important to develop a method to minimize oxidation of copper nano particles to improve its dispersion stability property in copper nano ink. In this study, copper nano particles were coated with 1-Octanethiol VSAM(Vaporized Self Assembled Multilayers) to prevent oxidation and coated copper powders were dispersed in conductive ink successfully by studying its relationship of different chain length of solvents to 1-Octanethiol coating layer to fabricate nano ink. Various alcohol solvents, such as 1-Hexanol, 1-Octanol, and 1-Decanol were used. The coating layer was observed using FESEM and TEM. Furthermore, dispersion of copper nano particles in nano inks, was characterized using Turbiscan analyzer, viscometer, and contact angle measurement tool.

Finite Element Analysis of Deformation Behavior During ECAP for an Aluminum Alloy Composite Model containing a SiC Particle and Porosities (강화상과 기공이 포함된 금속기지 복합재 모델의 ECAP 거동에 대한 유한요소해석)

  • Lee, Sung-Chul;Han, Sang-Yul;Kim, Ki-Tae;Hwang, Sang-Moo;Huh, Lyun-Min;Chung, Hyung-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.6
    • /
    • pp.739-746
    • /
    • 2004
  • The plastic deformation behavior of an aluminum alloy containing a particle and porosities was investigated at room temperature during equal channel angular pressing (ECAP). Finite element analysis by using ABAQUS shows that ECAP is a useful tool for eliminating residual porosity in the specimen, and more effective under friction condition. The simulation, however, shows considerably low density distributions for matrix near a particle at which many defects may occur during severe deformation. Finite element results of effective strains and deformed shapes for matrix with a particle were compared with theoretical calculations under simple shear stress. Also, based on the distribution of the maximum principal stress in the specimen, Weibull fracture probability was obtained for particle sizes and particle-coating layer materials. The probability was useful to predict the trend of more susceptible failure of a brittle coating layer than a particle without an interphase in metal matrix composites.