• Title/Summary/Keyword: Coating temperature.

Search Result 1,908, Processing Time 0.027 seconds

NUMERICAL SIMULATION OF THE EFFECTS OF RESIN SUPPLY TEMPERATURE ON OPTICAL FIBER COATING THICKNESS (피복재 공급온도가 광섬유 피복두께에 미치는 영향에 대한 전산유동해석)

  • Choi, J.S.;Kwak, H.S.;Kim, K.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.96-99
    • /
    • 2011
  • Fiber coatings are essential in optical fiber manufacturing, since they provide the protective layers from the surface damages and the adequate fiber strength. Flow and temperature fields of coating liquid in a fiber coating applicator are numerically investigated by using a commercial CFD software. The main focus of this computational study is on the thermal effects by viscous dissipation and the effects of coating supply temperature on the final fiber coating thickness. The numerical results reveal that the thermal effects play a major role in the high-speed optical fiber coating process and give substantial influences on the determination of coating thickness. Changing the supply temperature of coating liquid is found to relieve the radial variation of coating liquid viscosity in the coating die and it can be an effective way to control the fiber coating thickness.

  • PDF

The Effect of Graphite Addition and Pouring Temperature on the Coating State in Vaccum Process (감압조형시 흑연첨가 및 주입온도가 피복상태에 미치는 영향)

  • 조성준
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.5
    • /
    • pp.544-551
    • /
    • 1997
  • We tried to improve the coating capability of the coating material using an additive(hexagonal cystalline graphite) of 2%, 3%, 4% and 6% under various pouring temperature for the easy isolation of sand and coating material from the final product. As a result in case of using a 2% and 3% additive generally no burning state has been occurred under the low pouring temperature, but it has been gradually increased with the pouring temperature. On the other hand in case of using a 4% and 6% additive there has been no burning state through out the whole pouring temperature. From this result we could see that the best state of the final product without sand and coating material could generally be obtained if 4% and/or 6% of the crystalline graphite and the pouring temperature of 140$0^{\circ}C$$\pm$5$^{\circ}C$ would be used.

  • PDF

Effects of Process Temperature on the Tribological Properties of Tetrahedral Amorphous Carbon (ta-C) Coating (공정 온도에 따른 사면체 비정질 카본 (ta-C) 코팅의 트라이볼로지적 특성연구)

  • Kang, Yong-Jin;Kim, Do Hyun;Ryu, Hojun;Kim, Jongkuk;Jang, Young-Jun
    • Tribology and Lubricants
    • /
    • v.35 no.6
    • /
    • pp.362-368
    • /
    • 2019
  • In this study, mechanical and tribological properties were investigated by varying the process temperature (50, 100, 125 and 150℃) to reduce internal stress. The internal stress reduction by thermal dissociation ta-C coating film with increasing temperature is confirmed through the curvature radius of the ta-C coating according to the temperature of the SUS plate. As the coating temperature increased, the mechanical properties (hardness, modulus, toughness) deteriorated, which is in agreement with the Raman analysis results. As the temperature increased, the sp2 phase ratio increased owing to the dissociation of the sp3 phase. The friction and wear properties are related to the process temperature during ta-C coating. Low friction and wear properties are observed in high hardness samples manufactured at 50℃, and wear resistance properties decreased with increasing temperature. The contact area is expected to increase owing to the decrease of hardness(72 GPa to 39 GPa) and fracture toughness with increasing temperature which accelerated wear because of the debris generated. It was confirmed that at process temperature of over than 100℃, the bond structure of the carbon film changed, and the effect of excellent internal stress was reduced. However, the wear resistance simultaneously decreased owing to the reduction in fracture toughness. Therefore, in order to increase industrial utilization, optimum temperature conditions that reduce internal stress and retain mechanical properties.

Characterization of Coating Layer formed on the Metal Surface by Calorizing (Calorizing(Aluminizing) 코팅 층의 표면특성 고찰)

  • 하진욱
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.1 no.1
    • /
    • pp.49-54
    • /
    • 2000
  • The effect of Particle size of coating Powder and coating temperature on the Properties of coating layer was studied by calorizing(or aluminizing). The surface properties of coating layer were fully characterized, using SEM and EDXS. Coating powders were separated according to the particle size by 3 steps and the coating temperature was varied from $950^{\circ}C$ to $980^{\circ}C$. Calorizing with pack cementation method carried under Ar atmosphere for 5 hrs. Results show that the thickness and Al content of coating layer increased as the size of coating powder decreased and coating temperature increased. And pores formed on the coating layer reduced and homogeneity of coating layer increased with smaller particle size of coating powder.

  • PDF

Analysis of Coating Flow Characteristics in Wet-on-Wet Optical Fiber Liquid Coating Process (광섬유 WOW 액상코팅 공정의 코팅액 유동특성 해석연구)

  • Kim, Kyoungjin;Park, Joong-Youn
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.4
    • /
    • pp.91-96
    • /
    • 2017
  • In this computational study of optical fiber manufacturing, WOW (wet-on-wet) double coating process on freshly drawn glass fiber has been numerical modelled and simulated using a simplified geometry of typical optical fiber coating apparatus. The numerical domain includes primary and secondary coating dies along with secondary coating cup and the interface between primary and secondary coating liquids are investigated using level set method. Coating liquid viscosity is an important parameter and its dependence on temperature is also considered. Since there would be possibility for pressure and temperature of primary coating liquid to be increased substantially at high fiber drawing speed, the effects of increased pressure and temperature of primary coating liquid are examined on flow patterns of coating liquids in secondary coating cup. In case that both pressure and temperature of primary coating liquid are high enough, liquid interface becomes noticeably unstable and this flow instability could adversely affect the uniform coatings and final quality of produced optical fiber.

  • PDF

The Effect of Particle Size of Coating Powder and Coating Temperature on the Thickness of Coating Layer Formed on Metal Surface (Calorizing 처리에서 코팅분말의 입자크기 및 코팅온도가 금속표면에 형성된 코팅층의 두께에 미치는 영향)

  • Ha, Jin-Wook;Park, Hai-Woong
    • Applied Chemistry for Engineering
    • /
    • v.10 no.7
    • /
    • pp.1061-1065
    • /
    • 1999
  • The effect of particle size of coating powder and coating temperature on the thickness of coating layer formed on metal surface was studied by using XRD, SEM and EDXS. Coating powder was separated according to particle size by 3 steps and coating temperatures were varied from $950^{\circ}C$ to $980^{\circ}C$. Calorizing carried out at air and Ar conditions for 5 hrs, respectively. XRD result show that $Al_2O_3$ and AlN were formed during calorizing at air condition. The thickness and Al content of coating layer increased as the particle size of coating powder decreased and coating temperature increased.

  • PDF

Numerical Analysis of Natural Convection inside Spray Coating Room on Temperature Distributions (자연대류를 고려한 스프레이 코팅 룸에서의 온도분포 해석)

  • Kim, Nam Woong;Kim, Bo-Seon;Kim, Kug Weon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.8
    • /
    • pp.425-430
    • /
    • 2019
  • Zinc coatings are widely used because of their environmental friendliness and high performance. In general, the coating temperature is a major factor in determining the coating layer thickness and coating quality. In the case of a zinc coating, a uniform and appropriate coating temperature is required. In this study, a thermal flow simulation of the air flow was performed to analyze the temperature distribution of a zinc spray coating room in a natural convection state. Using SolidWorks, modeling was performed for two spray coating rooms, a preheating room, and a drying room, and a thermal flow coupled analysis was performed using ANSYS-FLUENT. As a result of the analysis, the temperature distribution characteristics in the spray coating rooms were determined. It was found that the present temperature was below the target temperature of $25^{\circ}C$. Simulations were conducted for two different boundary conditions (one with a heater added and another with the open part closed). The simulation results show that the method of closing the open part is better than adding the heater.

A Study on Heat Resistance of High Temperature Resistant Coating

  • Zhang, Liping;Wang, Xueying;Zhang, Qibin;Qin, Yanlong;Lin, Zhu
    • Corrosion Science and Technology
    • /
    • v.4 no.2
    • /
    • pp.60-63
    • /
    • 2005
  • A high temperature resistant coating has been developed, which is mainly for heavy oil production pipes deserved the serious corrosion. The coating has excellent physical and mechanical performance and corrosion resistance at room and high temperature. In order to simulate the underground working condition of heavy oil pipes, the heat resistance of the high temperature resistant coating has been studied. The development and a study on the heat resistance of the DHT high temperature resistance coating have been introduced in this paper.

The Canopy Transparency Coating Study of Cockpit Temperature Effect Verification (조종실 온도 영향성 검증을 위한 캐노피 투명체 코팅 연구)

  • Nam, Yongseog;Kim, Taehwan;Kim, Yunhi;Woo, Seongjo;Kim, Myungho
    • Journal of Aerospace System Engineering
    • /
    • v.2 no.2
    • /
    • pp.42-45
    • /
    • 2008
  • Under the non-operating exposure condition in the hot area, the T-50 cockpit temperature is expected over the requirement according to T-50 environmental criteria. So it is necessary to protect the cockpit from the high temperature condition during the non-operating exposure because the high temperature of the cockpit may result in the cockpit equipment malfunction. In this study, the transparency coating is selected as the method for protecting the cockpit from the high temperature exposure and analyzed the effect on the cockpit heat load attenuation. Some kinds of cockpit coating were reviewed and selected and the analysis was performed about the effect before and after coating application under 1% hot day condition based on the T-50 FSD hot soaking test data. The result of analysis show transparency coating is so effective to attenuate the heat load of T-50 cockpit.

  • PDF

Effects of Coating Materials on Fluidity and Temperature Loss of Molten Metals from Runner Systems in Full Moulds.

  • Cho, Nam-Don;Kim, Yong-Hyun;Choi, Jung-Kwon
    • Journal of Korea Foundry Society
    • /
    • v.10 no.1
    • /
    • pp.31-42
    • /
    • 1990
  • The full mould casting process in one of the newly developed techniques which has many advantages. Unbonded sand mould has been prepared for the major mould and $CO^2$ gas mould has been used occasionally for comparison. Patterns were built up with expanded polystyrene and coated with three different materials. Silica, graphite and zircon were used for the coating layer. The effects on fluidity and temperature loss of molten metals were investigated. The molten metals were Al-5% Si alloy, Cu-30% Zn alloy and gray iron of approximately 4.0% of carbon equivalent. Experimental variables were runner section area, superheat, sprue height, coating materials, coating thickness and apparent density of EPS pattern. The effects of coating materials on fluidity and temperature loss of the molten metals during transient pouring are summarized as follows : As runner section area, superheat and sprue height increased, fluidity increased. Temperature loss decreased as runner section area and sprue height increased. However, reversed effects were observed in the case of superheat increment. The coating materials decreased the fluidity of each alloy in the order of silica, graphite and zircon. Zircon brought to the highest temperature loss among the coating materials used. The fluidity increased in the order gray iron, Cu-30% Zn and Al-5% Si alloy while temperature loss in the reverse order. Especially in case of reduced pressure process, the fluidity was increased apparently. Al-5% Si alloy showed the lowest temperature loss among the alloys. The increment of the apparent density of EPS pattern resulted in the fluidity decrease and temperature loss increase. The relation between fluidity and temperature loss of each alloy can be expressed by the following equation within the coating thickness limit of 0.5-1.5㎜. F^*={\frac{a}{T^*-b}}-c$ where, $F^*$ : fluidity in the Full mould, $T^*$ : temperature loss in the mould. a : parameter for full mould. b, c : constants.

  • PDF