• Title/Summary/Keyword: Coating process

Search Result 2,258, Processing Time 0.035 seconds

Introduction of Computer Simulation for BIW Electrocoating Process (BIW 전착도장에서의 컴퓨터 시뮬레이션 적용사례)

  • Sohn, DaeHong;Jung, HiZean;Ahn, SeungHo;Kim, ByungSu;Kim, JungYeon;Choi, ByungSam
    • Corrosion Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.78-83
    • /
    • 2016
  • The e-coating to inhibit induced corrosion can deposit a coating not only on the exterior surface but also on the inside of whole metallic components of body-in-white (BIW). But it is difficult to deposit paint films on the inside area because metallic components are multi layered. It may cause shortness of e-coating thickness. The only way to properly verify e-coating thickness is by performing the use of tear-down prototypes. When paint films' thickness is inadequate, a structural modification on each metallic component is needed. Verification of the thickness improvement for a structural modification requires much manual effort and leads to increasing development time. Recently, the simulation technology has been developed to predict the e-coating thickness in e-coating field. By applying the simulation to BIW, improvement in paint thickness quality and shortening of development period are expected. The paper explains a validated solution that allows simulating the effect of design changes to the e-coating thickness and current density, thereby delivering results within a time frame of a few days.

A Study on Durability of Sprayed Coating Layer in the Molten Zn-0.2% Al Alloy Bath (아연-0.2%알루미늄합금 용융도금액 중에서 용사층의 내구성에 관한 연구)

  • 강태영;임병문;최장현;김영식
    • Journal of Welding and Joining
    • /
    • v.19 no.5
    • /
    • pp.512-519
    • /
    • 2001
  • Sink roll has been used in molten Zn-0.2%Al alloy bath of continuous galvanizing line in sinking and stabilizing process of the steel strip in molten metal bath. In this process, although the scraper scraps off the sink roll surface, the dross compounds is builded up on the sink roll surface and the life time of the sink roll is shorten by the dross compounds. The present study was investigated the application of the spray coating layer on sink roll body for improving durability In molten Zn-0.2%Al alloy. Through the durability tests in molten Zn-0.2%Al alloy with various ceramic and cermet coating layer, the optimum bond and top coating material was obtained. As the results, the system of STS430F base metal, WC-l7Co bond and $ZrO_2-SiO_2$ top coating was clarified to be the best quality of durability in molten Zn-0.2%Al alloy.

  • PDF

Characteristics of Re-Jr Coating Thin Film on Tungsten Carbide Core Surface (Tungsten Carbide 코어 표면에 코팅 된 Re-Ir 박막 특성)

  • Lee, Ho-Shik;Park, Yong-Pil;Cheon, Min-Woo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.139-139
    • /
    • 2010
  • Rhenium-Iridium(Re-Ir) thin films were deposited onto the tungsten carbide(WC) molding core by sputtering system. The Re-Ir thin films on tungsten carbide molding core were analyzed by scanning electron microscope(SEM) and surface roughness. The Re-Ir coating technique has been intensive efforts in the field of coating process because the coating technique and process have been their feature, like hardness, high elasticity, adrasion resistance and mechanical stability and also have been applied widely the industrial and biomedical areas. In this report, tungsten carbide(WC) molding core was manufactures using high performance precision machining and the efforts of Re-Ir coating on the surface roughness.

  • PDF

A Study on the Friction and Wear Characteristics of Cr-interrelatedness & WC/C Coating SCM4l5 Steel (Cr-계 및 WC/C 코팅 SCM415강의 마찰•마모 특성에 관한 연구)

  • Jang, Jeong-Hwan;Kim, Hae-Ji;Kim, Nam-Kyung;Zang, Qi;Lyu, SungKi
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.8 no.4
    • /
    • pp.122-128
    • /
    • 2009
  • The purpose of this study is to show the friction and wear characteristics on the vapor deposited coating layers on the SCM415 steel. In this research, frictional wear characteristic of coating materials such as CrN, AlCrN, WC/C was investigated under room temperature, normal air pressure and nothing lubricating condition. Therefore this study carried out research on the friction coefficient, micro hardness(Hv), roughness, EPMA on the vapor deposited coating layers on the SCM415 steel.

  • PDF

A Numerical Study on Combined Solution and Evaporation during Spin Coating Process (Wafer Spin Coating 공정에서 증발과 용액이 박막 형성에 미치는 영향에 관한 연구)

  • 노영미;임익태;김광선
    • Journal of the Semiconductor & Display Technology
    • /
    • v.2 no.1
    • /
    • pp.25-29
    • /
    • 2003
  • The fluid flow, mass transfer, heat transfer and film thickness variation during the spin coating process are numerically studied. The model is said to be I-dimensional because radial variations in film thickness, concentration and temperature are ignored. The finite difference method is employed to solve the equations that are simplified using the similarity transformation. In early time, the film thinning is due to the radial convective outflow. However that slows during the first seconds of spinning so the film thinning due to evaporation of solvent becomes sole. The time varing film thickness is analyzed according to the wafer spin speed, the various solvent fraction in the coating liquid, and the various solvent vapor fraction in the bulk of the overlying gas during the spin coating is estimated.

  • PDF

The performance of large-area organic solar cells by spray deposition process

  • Park, Seon-Yeong;Park, Dong-Seok;Kim, Do-Geun;Kim, Jong-Guk;Kim, Ju-Hyeon;Gang, Jae-Uk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.291-291
    • /
    • 2010
  • Organic solar cells have attracted much interest due to the potential advantage of the lightness, simple solution processing and flexibility. Until recently, the focus of organic solar cells research has been on optimization of material processing to improve the power conversion efficiency. However, area scaling is an important position for alternative to the market dominating solar cells. Spray deposition technologies have advantage of less material wastage and possibility of large scale photoactive area coating when compared with spin coating process. We investigated the performance of organic solar cells as a function of active area using two types of deposition process. The commonly used process is spin coating which can be fabricated organic materials deposition for devices. Spray deposition process compare with spin coating for large-area organic solar cells. The spray deposition organic layer shows excellent performance up to the active area of $4\;cm^2$ with the PCE of ~3.0 % under AM.1.5 simulated illumination with an intensity of $100mW/cm^2$. This indicates that the spray deposition process can be used as a mass production process for evaluating large-area organic solar cells.

  • PDF

Fabrication and Microstructure/Properties of Bulk-type Tantalum Material by a Kinetic Spray Process (Kinetic Spray 공정을 이용한 벌크형 탄탈륨 소재의 제조 및 미세조직/물성)

  • Lee, Ji-Hye;Kim, Ji-Won;Lee, Kee-Ahn
    • Journal of Powder Materials
    • /
    • v.23 no.1
    • /
    • pp.8-14
    • /
    • 2016
  • A bulk-type Ta material is fabricated using the kinetic spray process and its microstructure and physical properties are investigated. Ta powder with an angular size in the range $9-37{\mu}m$ (purity 99.95%) is sprayed on a Cu plate to form a coating layer. As a result, ~7 mm-sized bulk-type high-density material capable of being used as a sputter material is fabricated. In order to assess the physical properties of the thick coating layer at different locations, the coating material is observed at three different locations (surface, center, and interface). Furthermore, a vacuum heat treatment is applied to the coating material to reduce the variation of physical properties at different locations of the coating material and improve the density. OM, Vickers hardness test, SEM, XRD, and EBSD are implemented for analyzing the microstructure and physical properties. The fabricated Ta coating material produces porosity of 0.11~0.12%, hardness of 311~327 Hv, and minor variations at different locations. In addition, a decrease in the porosity and hardness is observed at different locations upon heat treatment.

Characterization of the Silica Coated Diatomite Based Ceramic Filter for Water Treatment (실리카 분말이 코팅된 수처리용 규조토계 세라믹 필터의 특성평가)

  • Bae, Byung-Seo;Ha, Jang-Hoon;Song, In-Hyuck;Hahn, Yoo-Dong
    • Journal of Powder Materials
    • /
    • v.21 no.1
    • /
    • pp.21-27
    • /
    • 2014
  • In this study, diatomite based materials were investigated as a support filter for silica particle coating. The silica sol for coating was synthesized by a st$\ddot{o}$ber process. The diatomite support was dry-pressed at 10 MPa and sintered at $1200^{\circ}C$ for 1 hour. The coating sol was prepared as a mixture of EtOH and silica sol. The diatomite support was coated by a dip-coating process. Silica coated diatomite filter was sintered at $1000{\sim}1200^{\circ}C$ for 1 hour. The largest pore size was decreased with increasing concentration ratio of coating sol. The gas and water permeability of silica coated diatomite decreased with increasing of concentration ratio of the coating sol.

Continuous Nanocomposite Coatings on a Phosphor for the Enhancement of the Long-term Stability

  • Kim, Jong-Woung;Song, Jung-Oh;Kim, Chang-Keun
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.233-233
    • /
    • 2006
  • [ $Y_{2}O_{2}S:Eu$ ], a red phosphor, coated with silica nanoparticles or nanocomposites composed of silica nanoparticles and polymeric materials such as PMMA and PVP was prepared via sol-gel process. Samples were prepared from four different methods coded P1, P2, P3, and P4. P1 includes a conventional sol-gel process and a dip-coating method while P2 has the same procedure with P1 except that nanocomposites containing both silica nanoparticles and polymer prepared by sol-gel process were used as coating materials. In P3 method, phosphors were dispersed in a solution containing silica precursor, i.e., TEOS and then polymerization was performed to coat onto the phosphors surface while P4 followed the same procedure with P3 except that a solution containing both TEOS and organic monomer were used in preparing coating materials. Among various coating methods examined in this study, uniform coating of phosphor could be achieved by using method P4, i.e., phosphor surface coating in a solution containing hydrophobic monomer and TEOS. Furthermore, $Y_{2}O_{2}S:Eu$ red phosphor coated with nanocomposite composed of PMMA matrix and silica nanoparticles exhibited enhanced PL intensity and long-term stability.

  • PDF