• 제목/요약/키워드: Coating pore resistance

검색결과 54건 처리시간 0.028초

3.5 wt.% NaCl로 오염된 콘크리트 기공 용액에서 아크 용사 Al 및 Al/에폭시 이중 금속 고분자 코팅의 내식성 성능 (Corrosion resistance performance of arc thermal sprayed Al and Al/epoxy dual metal polymeric coating in 3.5 wt.% NaCl-contaminated concrete pore solution)

  • 지텐드라 쿠마 싱;이한승
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2023년도 가을학술발표대회논문집
    • /
    • pp.119-120
    • /
    • 2023
  • Corrosion of the steel rebar in coastal environment caused huge economical loss of the globe. Therefore, coating on the steel rebar being used to mitigate the corrosion. In the present study, we have applied epoxy coating on arc thermal sprayed Al coating (a dual metal/polymeric coating) vis-à-vis compared with as coated one (Al coating). The corrosion studies were performed in simulated concrete pore solution with 3.5 wt. % NaCl solution. The morphology of the dual epoxy/Al coating is smooth while Al coating shows rankle and defects. Due to defects, Al coating is susceptible to corrosion while dual epoxy/Al coating has performed excellent compared to as coated one at extended period of immersion.

  • PDF

Cu-Ti합금의 침투에 의한 $Al_2O_3$ 세라믹 용사층의 복합화 (Infiltration of the Cu-Ti Alloys to Porous $Al_2O_3$ Ceramic Coating)

  • 이형근;김대훈;황선효
    • Journal of Welding and Joining
    • /
    • 제10권4호
    • /
    • pp.213-221
    • /
    • 1992
  • Al$_{2}$O$_{3}$ ceramic coating layer by gas flame spraying was very porous, therefore it could not have wear and corrosion resistance at all. To get a dense and strong coating layer, a method to infiltrate an alloy into the pores of $Al_{2}$O$_{3}$ ceramic coating was investigated. Cu-Ti alloys, which had good wettability and reactivity with $Al_{2}$O$_{3}$ ceramic, were examined for infiltration. Infiltration of the alloys was performed in vacuum at 1100.deg.C. The melt of Cu-50 at % Ti alloy was well penetrated through the porous $Al_{2}$O$_{3}$ coating and tightly sealed the pores, unbounded area and microcracks in the coating. The alloy melt in the pores reacted with $Al_{2}$O$_{3}$ ceramic to produce a suboxide phase, Cu$_{2}$Ti$_{4}$O. This composite layer which was composed of $Al_{2}$O$_{3}$ and Cu$_{2}$Ti$_{4}$O phase had good microstructure and wear and corrosion resistance. Additionally, microstructures at interfaces between coating layers were greatly improved owing to the effect of vacuum heat treating.

  • PDF

Properties of Polysiloxane Coated Borosilicate Lining Blocks

  • Song, Jeongho;Song, Ohsung
    • 한국세라믹학회지
    • /
    • 제54권6호
    • /
    • pp.525-529
    • /
    • 2017
  • To improve the thermal resistance of a porous borosilicate lining block, we prepared and applied polysiloxane-fumed silica-ethanol slurry on top of the block and fired the coating layer using a torch for 5 minutes at $800^{\circ}C$. We conducted magnified characterizations using a microscope and XRD analysis to observe phase transformations, and TGA-DTA analysis to determine the thermal resistance. Thermal characterizations showed improved heat resistance with relatively high polysiloxane content slurry. Cross-sectional optical microscope observation showed less melting near the surface and decreased pore formation area with higher polysiloxane content slurry. XRD analysis revealed that the block and coating layer were amorphous phases. TGA-DTA analysis showed an endothermic reaction at around $550^{\circ}C$ as the polysiloxane in the coating layer reacted to form SiOC. Therefore, coating polysiloxane on a borosilicate block contributes to preventing the melting of the block at temperatures above $800^{\circ}C$.

A Study on the Corrosion Behavior of Magnesium Alloy Sealed with Chemical Conversion Coating and Sol-gel Coating

  • Lee, Dong Uk;Chaudhari, Shivshankar;Choi, Seung Yong;Moon, Myung Jun;Shon, Min Young
    • Corrosion Science and Technology
    • /
    • 제20권4호
    • /
    • pp.175-182
    • /
    • 2021
  • Magnesium alloy is limited in the industrial field because its standard electrode potential is -2.363 V vs. NHE (Normal Hydrogen Electrode) at 25 ℃. This high electrochemical activity causes magnesium to quickly corrode with oxygen in air; chemical conversion coating prevents corrosion but causes surface defects like cracks and pores. We have examined the anti-corrosion effect of sol-gel coating sealed on the defected conversion coating layer. Sol-gel coatings produced higher voltage current and smaller pore than the chemical conversion coating layer. The conversion coating on magnesium alloy AZ31 was prepared using phosphate-permanganate solution. The sol-gel coating was designed using trimethoxymethylsilane (MTMS) and (3-Glycidyloxypropyl) trimethoxysilane (GPTMS) as precursors, and aluminum acetylacetonate as a ring-opening agent. The thermal shock resistance was tested by exposing specimens at 140 ℃ in a convection oven; the results showed changes in the magnesium alloy AZ31 surface, such as oxidization and cracking. Scanning electron microscope (FE-SEM) analysis confirmed a sealed sol-gel coating layer on magnesium alloy AZ31. Electrochemical impedance spectroscopy (EIS) measured the differences in corrosion protection properties by sol-gel and conversion coatings in 0.35 wt% NaCl solution, and the potentiodynamic polarization test and confirmed conversion coating with the sol-gel coating show significantly improved resistance by crack sealing.

3.5wt.% NaCl로 오염된 콘크리트 기공 용액에서 아크 용사 공정에 의해 부착된 Al 및 Zn 코팅의 부식 성능 (Corrosion Performance of Al and Zn Coatings Deposited by Arc Thermal Spray Process in 3.5 wt.% NaCl-Contaminated Concrete Pore Solution)

  • 지텐드라 쿠마 싱;이한승
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2023년도 봄 학술논문 발표대회
    • /
    • pp.59-60
    • /
    • 2023
  • The corrosion of steel rebar embedded in the coastal areas is corroding once the chloride ions ingress through the pores of the concrete. Therefore, in the present study, a 100 ㎛ thick Al and Zn coating was deposited by an arc thermal spray process onto the steel. The corrosion studies of these deposited coatings were assessed in 3.5 wt.% NaCl contaminated concrete pore (CP) solution with immersion periods. The results show that the Al coating is more corrosion resistance compared to the Zn coating attributed to the formation of gibbsite (γ-Al(OH)3) whereas Zn coating exhibits Zn(OH)2 onto the coating surface as passive layer. The Zn(OH)2 is readily soluble in an alkaline solution. Alternatively, γ-Al(OH)3 on the Al coating surface is less solubility in the alkaline pH, which further provides barrier protection against corrosion.

  • PDF

ERCO 도포가 혼화재 다량치환 콘크리트의 탄산화저항성에 미치는 영향 (Effect of ERCO Coating on the Carbonation Resistance of High Volume Mineral Admixture Concrete)

  • 김상섭;윤정완;김민영;최영두;한민철;한천구
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2015년도 춘계 학술논문 발표대회
    • /
    • pp.23-24
    • /
    • 2015
  • As this study is an experiment for solving problem on the carbonation acceleration of high volume admixture concrete, the capillary pore getting filled up by saponification as cooking oil gets absorbed to the concrete surface in case of applying a cooking oil based coating agent to the concrete has been verified in the previous studies. Accordingly, this study has performed a comparative experiment on the cooking oil and the anticorrosive coating agent sold on the market while the result followed by this experiment has shown the fact of indicating similar carbonation penetration depth and porosity.

  • PDF

고분자 전해질 연료전지 금속 분리판 적용을 위한 탄소 박막의 증착과 내식성 평가 (Corrosion Properties of Carbon-Coated Metallic Bipolar Plate for PEMFC)

  • 장동수;이정중
    • 한국표면공학회지
    • /
    • 제48권3호
    • /
    • pp.87-92
    • /
    • 2015
  • Carbon thin films were deposited on STS 316L sheets by inductively coupled plasma enhanced magnetron sputtering with or without substrate bias voltage. Typical Raman spectrum for amorphous diamond-like carbon (DLC) was obtained, and the interfacial contact resistance (ICR) was measured to show its conductive nature. The electrochemical impedance spectroscopy (EIS) was used to investigate the corrosion mechanism of the carbon coating under the polymer electrolyte membrane fuel cell (PEMFC) condition. According to the pore-corrosion mechanism, the electrolyte penetrates the carbon coating through the pores and reacts with the substrate. As the substrate corrosion proceeds, the pore enlargement occurs and the surface area of the substrate exposed to the electrolyte. Applicability of the carbon coating for the PEMFC bipolar plate was evaluated by potentiodynamic polarization experiments. Finally, an adhesion problem was briefly considered.

Preparation of high-performance nanofiltration membrane with antioxidant properties

  • Yu, Feiyue;Zhang, Qinglei;Pei, Zhiqiang;Li, Xi;Yang, Xuexuan;Lu, Yanbin
    • Membrane and Water Treatment
    • /
    • 제13권4호
    • /
    • pp.191-199
    • /
    • 2022
  • In industrial production, the development of traditional polyamide nanofiltration (NF) membrane was limited due to its poor oxidation resistance, complex preparation process and high cost. In this study, a composite NF membrane with high flux, high separation performance, high oxidation resistance and simple process preparation was prepared by the method of dilute solution dip coating. And the sulfonated polysulfone was used for dip coating. The results indicated that the concentration of glycerin, the pore size of the based membrane, the composition of the coating solution, and the post-treatment process had important effects on the structure and performance of the composite NF membrane. The composite NF membrane prepared without glycerol protecting based membrane had a low flux, when the concentration of glycerin increased from 5% to 15%, the pure water flux of the composite NF membrane increased from 46.4 LMH to 108.2 LMH, and the salt rejection rate did not change much. By optimizing the coating system, the rejection rate of Na2SO4 and PEG1000 was higher than 90%, the pure water flux was higher than 40 LMH (60psi), and it can withstand 20,000 ppm.h NaClO solution cleaning. When the post treatment processes was adjusted, the salt rejection rate of NaCl solution (250 ppm) reached 45.5%, and the flux reached 62.2 LMH.

Investigation of Functional 6061 Aluminum Alloy Oxide Film with Anodization Voltage and its Corrosion Resistance

  • Jisoo Kim;Chanyoung Jeong
    • Corrosion Science and Technology
    • /
    • 제22권6호
    • /
    • pp.399-407
    • /
    • 2023
  • This study investigated the formation of oxide films on 6061 aluminum (Al) alloy and their impacts on corrosion resistance efficiency by regulating anodization voltage. Despite advantageous properties inherent to Al alloys, their susceptibility to corrosion remains a significant limitation. Thus, enhancing corrosion resistance through developing protective oxide films on alloy surfaces is paramount. The first anodization was performed for 6 h with an applied voltage of 30, 50, or 70 V on the 6061 Al alloy. The second anodization was performed for 0.5 h by applying 40 V after removing the existing oxide film. Resulting oxide film's shape and roughness were analyzed using field emission-scanning electron microscopy (FE-SEM) and atomic force microscopy (AFM). Wettability and corrosion resistance were compared before and after a self-assembled monolayer (SAM) using an FDTS (1H, 1H, 2H, 2H-Perfluorodecyltrichlorosilane) solution. As the first anodization voltage increased, the final oxide film's thickness and pore diameter also increased, resulting in higher surface roughness. Consequently, all samples exhibited superhydrophilic behavior before coating. However, contact angle after coating increased as the first anodization voltage increased. Notably, the sample anodized at 70 V with superhydrophobic characteristics after coating demonstrated the highest corrosion resistance performance.

다층 기공구조를 갖는 다공성 반응소결 탄화규소 다공체 제조 (Fabrication of Porous Reaction Bonded Silicon Carbide with Multi-Layered Pore Structures)

  • 조경선;김규미;박상환
    • 한국세라믹학회지
    • /
    • 제46권5호
    • /
    • pp.534-539
    • /
    • 2009
  • Reaction Bonded Silicon Carbide(RBSC) has been used for engineering ceramics due to low-temperature fabrication and near-net shape products with excellent structural properties such as thermal shock resistance, corrosion resistance and mechanical strength. Recently, attempts have been made to develop hot gas filter with gradient pore structure by RBSC to overcome weakness of commercial clay-bonded SiC filter such as low fracture toughness and low reliability. In this study a fabrication process of porous RBSC with multi-layer pore structure with gradient pore size was developed. The support layer of the RBSC with multi-layer pore structure was fabricated by conventional Si infiltration process. The intermediate and filter layers consisted of phenolic resin and fine SiC powder were prepared by dip-coating of the support RBSC in slurry of SiC and phenol resin. The temperature of $1550^{\circ}C$ to make Si left in RBSC support layer infiltrate into dip-coated layer to produce SiC by reacting with pyro-carbon from phenol resin.