• Title/Summary/Keyword: Coating material

Search Result 2,050, Processing Time 0.03 seconds

Cutting Performance of Ti-Al-Si-N Coated Endmill for High-Hardened materials by Hybrid Coating System (하이브리드 코팅에 의한 고경도 소재용 Ti-Al-Si-N코팅 엔드밀의 절삭성능평가)

  • 김경중;강명창;이득우;김정석;김광호
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.89-94
    • /
    • 2003
  • Hard coatings are known to improve the performance of cutting tools in aggressive machining applications, such as high speed machining. New superhard Ti-Al-Si-W films, characterized by a nanocomposite nano-sized (Ti,Al,Si)N crystallites embedded in amorphous $Si_3 N_4$ matrix, could be successfully synthesized on WC-Co substrates by a hybrid coating system of arc ion plating(AIP) and sputtering method. The hardness of Ti-Al-Si-N film increased with incorporation of Si, and had the maximum value ~50 GPa at the Si content of 9 at.%, respectively. And the X-ray diffraction patterns of Ti-Al-Si-N films with various Si content is investigated. In this study, Ti-Al-Si-N coatings were applied to end-mill tools made of WC-Co material by a hybrid coating system. Cutting tests fir the high-hardened material (STD11,$H_R$)C62 and their performances in high speed cutting conditions were studied. Also, the tool wear and tool lift of Ti-Al-Si-N with various si(6, 9, 19) contents were measured.

  • PDF

Properties of Sol-gel Coating Materials Synthesized from Colloidal Silicas and Methyltrimethoxysilane (Colloidal Silica와 Methyltrimethoxysilane간의 졸겔반응으로 합성된 코팅제 특성 연구)

  • 강동필;박효열;안명상;이태희;명인혜;강귀태
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.9
    • /
    • pp.967-972
    • /
    • 2004
  • Hardness and surface property of coated gel materials are considerably different according to kinds(particle size/stabilized ion) of colloidal silica(CS), kinds of silanes, content ratio of silane versus CS, and reaction degree in sol solution. We report the properties of sol-gel coating materials in which the factors of reaction are kinds of CS, contents ratio of CS and MTMS, and reaction time of sol. The contact angles of the coated films obtained from the mixed CS system showed a little good relationship with MTMS content increase to those from HSA CS reaction system and the change of contact angle didn't have much effect on reaction time of sol. In the coating films obtained from HSA CS reaction system, the surface was much rough in case of that the content MTMS decreased and the reaction of sol kept long. The surface roughness of films obtained from the mixed CS reaction system showed similar tendency, though its degree was a little different. In synthesis of sol-gel coating materials, we could identify that choice of CS kinds and content ratio of CS and silane were important and it was desirable the reaction time of sol is not long.

Properties of Nano-Hybrid Coating Films Synthesized from Colloidal Silica-Silane (콜로이달 실리카와 실란으로부터 합성된 나노하이브리드 코팅 박막의 특성)

  • Na, Moon-Kyong;Ahn, Myeong-Sang;Kang, Dong-Pil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.232-233
    • /
    • 2006
  • In recent years the interest in organic/inorganic hybrid materials has increased at a fast rate. Nano organic-inorganic hybrid composites have shown advantages for preparing hard coating layers. Especially, nano hybrid composite has low environmental pollution. It has high transparency, hardness, toughness, thermal dissociation temperature, hydrophobicity by using nano sized inorganic material. There are many ways in which these materials may be synthesized, a typical one being the use of silica and silanes using the sol-gel process. The structure of sol-gel silica evolves as a result of these successive hydrolysis and condensation reactions and the subsequent drying and curing. The sol-gel reactions are catalyzed by acids and produce silica sol solutions. The silica sol grows until they reach a size where a gel transition occurs and a solid-like gel is formed. Colloidal silica(CS)/silane sol solutions were synthesized in variation with parameters such as different acidity and reaction time. In order to understand their physical and chemical properties, sol-gel coating films were fabricated on glass. From all sol-gel solutions, seasoning effect of sol-gel coating layer on glass was observed.

  • PDF

A Development of Primary Charging Roller for Printer Cartridge (Printer Cartridge용 저압대전체 개발)

  • Cho, Hyun-Seob
    • Proceedings of the KAIS Fall Conference
    • /
    • 2007.11a
    • /
    • pp.170-173
    • /
    • 2007
  • Primary charging roller rotated with contacting surface of OPC drum and take charge OPC drum. Owing to this reason, primary charging roller made by elasticity substance with electric conduction. Properties of charging and image changed by class of coating, method of coating and environment. This study developed about coating material and coating method to make print image of good quality.

  • PDF

Manufacturing of Ni-Cr-B-Si + WC/12Co Composite Coating Layer Using Laser Cladding Process and its Mechanical Properties (레이저 클래딩 공정을 이용한 Ni-Cr-B-Si + WC/12Co 복합 코팅층의 제조 및 기계적 특성)

  • Ham, Gi-Su;Kim, Chul-O;Park, Soon-Hong;Lee, Kee-Ahn
    • Journal of Powder Materials
    • /
    • v.24 no.5
    • /
    • pp.370-376
    • /
    • 2017
  • In this study we manufacture a Ni-Cr-B-Si +WC/12Co composite coating layer on a Cu base material using a laser cladding (LC) process, and investigate the microstructural and mechanical properties of the LC coating and Ni electroplating layers (reference material). The initial powder used for the LC coating layer is a powder feedstock with an average particle size of $125{\mu}m$. To identify the microstructural and mechanical properties, OM, SEM, XRD, room and high temperature hardness, and wear tests are implemented. Microstructural observation of the initial powder and LC coating layer confirm the layer is composed mainly of ${\gamma}-Ni$ phases and WC and $Cr_{23}C_6$ carbides. The measured hardness of the LC coating and Ni electroplating layers are 653 and 154 Hv, respectively. The hardness measurement from room up to high temperatures of $700^{\circ}C$ result in a hardness decrease as the temperature increases, but the hardness of the LC coating layer is higher for all temperature conditions. Room temperature wear results show that the wear loss of the LC coating layer is 1/12 of the wear level of the Ni electroplating layer. The measured bond strength is also greater in the LC coating than the Ni electroplating.

Microstructural and Wear Properties of WC-based and Cr3C2-based Cermet Coating Materials Manufactured with High Velocity Oxygen Fuel Process (고속 화염 용사 공정으로 제조된 WC계 및 Cr3C2계 Cermet 코팅 소재의 미세조직 및 마모 특성)

  • Kang, Yeon-Ji;Ham, Gi-Su;Kim, Hyung-Jun;Yoon, Sang-Hoon;Lee, Kee-Ahn
    • Journal of Powder Materials
    • /
    • v.25 no.5
    • /
    • pp.408-414
    • /
    • 2018
  • This study investigates the microstructure and wear properties of cermet (ceramic + metal) coating materials manufactured using high velocity oxygen fuel (HVOF) process. Three types of HVOF coating layers are formed by depositing WC-12Co, WC-20Cr-7Ni, and Cr3C2-20NiCr (wt.%) powders on S45C steel substrate. The porosities of the coating layers are $1{\pm}0.5%$ for all three specimens. Microstructural analysis confirms the formation of second carbide phases of $W_2C$, $Co_6W_6C$, and $Cr_7C_3$ owing to decarburizing of WC phases on WC-based coating layers. In the case of WC-12Co coating, which has a high ratio of $W_2C$ phase with high brittleness, the interface property between the carbide and the metal binder slightly decreases. In the $Cr_3C_2-20CrNi$ coating layer, decarburizing almost does not occur, but fine cavities exist between the splats. The wear loss occurs in the descending order of $Cr_3C_2-20NiCr$, WC-12Co, and WC-20Cr-7Ni, where WC-20Cr-7Ni achieves the highest wear resistance property. It can be inferred that the ratio of the carbide and the binding properties between carbide-binder and binder-binder in a cermet coating material manufactured with HVOF as the primary factors determine the wear properties of the cermet coating material.

Preparation of UV-curable Ozone Resistance Coating Solutions using Fluoromonomer (불소 단량체를 이용한 자외선 경화형 내 오존성 코팅 막 제조)

  • Lee, Chang Ho;Lee, Sang Goo;Kim, Sung Rae;Lee, Jong Dae
    • Korean Chemical Engineering Research
    • /
    • v.50 no.3
    • /
    • pp.421-426
    • /
    • 2012
  • The effect of synthesis conditions such as various organic material and composition of organic-inorganic material in ozone resistance and surface characteristic of ultraviolet cured organic-inorganic hybrid coating film has been investigated. Organic-inorganic hybrid coating solution was prepared using tetraethoxysilane (TEOS), silane coupling agent methacryloyloxypropyltrimethoxysilane (MPTMS), 2,2,2-trifluoroethylmethacrylate, and various organic materials with acrylate group, bar-coated on substrates using applicator and densified by UV-curing. It was found that ozone resistance and surface hardness of the coating film was increased with contents of TEOS. It was also found that ozone resistance of coating film was increased with contents of 2,2,2-trifluoroethylmethacrylate. On the other hand, surface hardness was decreased with increase of 2,2,2-trifluoroethylmethacrylate. In addition, Surface hardness of coating film was increased with the addition of aliphatic urethane acrylate. It was also found that the transmittance of coating films was not influenced by content of TEOS and 2,2,2-trifluoroethylmethacrylate. In addition, the coating film exhibited high transmittance of above 90%.

Li3PO4 Coated Li[Ni0.75Co0.1Mn0.15]O2 Cathode for All-Solid-State Batteries Based on Sulfide Electrolyte

  • Lee, Joo Young;Park, Yong Joon
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.407-415
    • /
    • 2022
  • Surface coating of cathodes is an essential process for all-solid-state batteries (ASSBs) based on sulfide electrolytes as it efficiently suppresses interfacial reactions between oxide cathodes and sulfide electrolytes. Based on computational calculations, Li3PO4 has been suggested as a promising coating material because of its higher stability with sulfides and its optimal ionic conductivity. However, it has hardly been applied to the coating of ASSBs due to the absence of a suitable coating process, including the selection of source material that is compatible with ASSBs. In this study, polyphosphoric acid (PPA) and (NH4)2HPO4 were used as source materials for preparing a Li3PO4 coating for ASSBs, and the properties of the coating layer and coated cathodes were compared. The Li3PO4 layer fabricated using the (NH4)2HPO4 source was rough and inhomogeneous, which is not suitable for the protection of the cathodes. Moreover, the water-based coating solution with the (NH4)2HPO4 source can deteriorate the electrochemical performance of high-Ni cathodes that are vulnerable to water. In contrast, when an alcohol-based solvent was used, the PPA source enabled the formation of a thin and homogeneous coating layer on the cathode surface. As a consequence, the ASSBs containing the Li3PO4-coated cathode prepared by the PPA source exhibited significantly enhanced discharge and rate capabilities compared to ASSBs containing a pristine cathode or Li3PO4-coated cathode prepared by the (NH4)2HPO4 source.

Preparation and Performance of Composite Membrane Prepared by Layer-by-Layer Coating Method (Layer-by-Layer 코팅법을 적용한 복합막 제조와 투과성능 평가)

  • Jeon, Yi Seul;Rhim, Ji Won
    • Membrane Journal
    • /
    • v.25 no.6
    • /
    • pp.538-546
    • /
    • 2015
  • In this study, composite membrane is prepared by Layer-by-Layer method using hydrophobic polymer as a coating material on the polysulfone support. The existence of coating layer on the surface and cross section was confirmed by the scanning electronic microscopy. The flux and rejection of the resulting membranes were characterized using 100 ppm NaCl feed solution. PVSA, PEI, PAA, PSSA, PSSA_MA were used as a coating polymer in this study. The composite membrane prepared by using 8,000 ppm PAA solution (Ion strength = 0.35, Coating time = 3 min) and 10,000 ppm PEI solution (Coating time = 4 min). As a result, PAA-PEI composite membrane showed flux of 101 LMH and salt rejection of 66.7%. The composite membrane showed the comparable performance as good as NE 4040-70 (Flux = 30 LMH, Rejection = 40~70%) model produced by Toray Chemical co.

A Facile Process for Surface Modification with Lithium Ion Conducting Material of Li2TiF6 for LiMn2O4 in Lithium Ion Batteries

  • Kim, Min-Kun;Kim, Jin;Yu, Seung-Ho;Mun, Junyoung;Sung, Yung-Eun
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.223-230
    • /
    • 2019
  • A facile method for surface coating with $Li_2TiF_6$ which has a high lithium-ion conductivity, on $LiMn_2O_4$ spinel cathode material for high performance lithium ion batteries. The surface coating is performed by using a co-precipitation method with $Li_2CO_3$ powder and $H_2TiF_6$ solution under room temperature and atmospheric pressure without special equipment. Total coating amount of $Li_2TiF_6$ is carefully controlled from 0 to 10 wt.% based on the active material of $LiMn_2O_4$. They are evaluated by a systematic combination of analyses comprising with XRD, SEM, TEM and ICP. It is found that the surface modification of $Li_2TiF_6$ is very beneficial to high cycle life and excellent rate capability by reducing surface failure and supporting lithium ions transportation on the surface. The best coating condition is found to have a high cycle life of $103mAh\;g^{-1}$ at the 100th cycle and a rate capability of $102.9mAh\;g^{-1}$ under 20 C. The detail electrochemical behaviors are investigated by AC impedance and galvanostatic charge and discharge test.