• Title/Summary/Keyword: Coating capability

Search Result 109, Processing Time 0.026 seconds

The Origin of the Residual Carbon in LiFePO4 Synthesized by Wet Milling

  • Park, Sung-Bin;Park, Chang-Kyoo;Hwang, Jin-Tae;Cho, Won-Il;Jang, Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.2
    • /
    • pp.536-540
    • /
    • 2011
  • This study reports the origin of the electrochemical improvement of $LiFePO_4$ when synthesized by wet milling using acetone without conventional carbon coating. The wet milled $LiFePO_4$ delivers 149 $mAhg^{-1}$ at 0.1 C, which is comparable to carbon coated $LiFePO_4$ and approximately 74% higher than that of dry milled $LiFePO_4$, suggesting that the wet milling process can increase the capacity in addition to conventional carbon coating methods. UV spectroscopy, elemental microanalysis, and evolved gas analysis are used to find the root cause of the capacity improvement during the mechanochemical reaction in acetone. The analytical results show that the improvement is attributed to the conductive residual carbon on the surface of the wet milled $LiFePO_4$ particles, which is produced by the reaction of $FeC_2O_4{\cdot}2H_2O$ with acetone during wet milling through oxygen deficiency in the precursor.

Microwave Absorbance of Polymer Composites Containing SiC Fibers Coated with Ni-Fe Thin Films

  • Liu, Tian;Kim, Sung-Soo;Choi, Woo-cheal;Yoon, Byungil
    • Journal of Powder Materials
    • /
    • v.25 no.5
    • /
    • pp.375-378
    • /
    • 2018
  • Conductive and dielectric SiC are fabricated using electroless plating of Ni-Fe films on SiC chopped fibers to obtain lightweight and high-strength microwave absorbers. The electroless plating of Ni-Fe films is achieved using a two-step process of surface sensitizing and metal plating. The complex permeability and permittivity are measured for the composite specimens with the metalized SiC chopped fibers dispersed in a silicone rubber matrix. The original non-coated SiC fibers exhibit considerable dielectric losses. The complex permeability spectrum does not change significantly with the Ni-Fe coating. Moreover, dielectric constant is sensitively increased with Ni-Fe coating, owing to the increase of the space charge polarization. The improvements in absorption capability (lower reflection loss and small matching thickness) are evident with Ni-Fe coating on SiC fibers. For the composite SiC fibers coated with Ni-Fe thin films, a -35 dB reflection loss is predicted at 7.6 GHz with a matching thickness of 4 mm.

Anticorrosive Coating Material with Dual Self-healing Capability for Steel Coating (이중 자기치유 메커니즘을 통한 강판의 내부식성 코팅)

  • Lee, Hyang Moo;Yun, Sumin;Kim, Jin Chul;Cho, Soo Hyoun;Cheong, In Woo
    • Journal of Adhesion and Interface
    • /
    • v.22 no.2
    • /
    • pp.47-56
    • /
    • 2021
  • Steel plates coated by self-healable polymer still can be rusted since it takes time to be healed. In this study, dual self-healing coating material is developed using corrosion inhibitor (DTBEDA) which can form hindered urea (HUB) as reversible cross-linking bond at the same time. Developed dual self-healing polymer is coated on steel plate, and scratch healing property was investigated by surgical blades and nano/micro indentation tester. The anticorrosion effect of DTBEDA was investigated by electrochemical impedance spectroscopy (EIS).

Polybenzimidazole (PBI) Coated CFRP Composite as a Front Bumper Shield for Hypervelocity Impact Resistance in Low Earth Orbit (LEO) Environment

  • Kumar, Sarath Kumar Sathish;Ankem, Venkat Akhil;Kim, YunHo;Choi, Chunghyeon;Kim, Chun-Gon
    • Composites Research
    • /
    • v.31 no.3
    • /
    • pp.83-87
    • /
    • 2018
  • An object in the Low Earth Orbit (LEO) is affected by many environmental conditions unlike earth's surface such as, Atomic oxygen (AO), Ultraviolet Radiation (UV), thermal cycling, High Vacuum and Micrometeoroids and Orbital Debris (MMOD) impacts. The effect of all these parameters have to be carefully considered when designing a space structure, as it could be very critical for a space mission. Polybenzimidazole (PBI) is a high performance thermoplastic polymer that could be a suitable material for space missions because of its excellent resistance to these environmental factors. A thin coating of PBI polymer on the carbon epoxy composite laminate (referred as CFRP) was found to improve the energy absorption capability of the laminate in event of a hypervelocity impact. However, the overall efficiency of the shield also depends on other factors like placement and orientation of the laminates, standoff distances and the number of shielding layers. This paper studies the effectiveness of using a PBI coating on the front bumper in a multi-shock shield design for enhanced hypervelocity impact resistance. A thin PBI coating of 43 micron was observed to improve the shielding efficiency of the CFRP laminate by 22.06% when exposed to LEO environment conditions in a simulation chamber. To study the effectiveness of PBI coating in a hypervelocity impact situation, experiments were conducted on the CFRP and the PBI coated CFRP laminates with projectile velocities between 2.2 to 3.2 km/s. It was observed that the mass loss of the CFRP laminates decreased 7% when coated by a thin layer of PBI. However, the study of mass loss and damage area on a witness plate showed CFRP case to have better shielding efficiency than PBI coated CFRP laminate case. Therefore, it is recommended that PBI coating on the front bumper is not so effective in improving the overall hypervelocity impact resistance of the space structure.

A Study on Waterproofing Performance Evaluation of Polyurea Resin Waterproofing Membrane Coating of Velocity per Second Hardening (뿜칠형 초속경화 폴리우레아수지 도막방수재의 성능평가에 관한 연구)

  • Oh, Sang-Keun;Kim, Su-Ryun;Lee, Sung-Il
    • Journal of the Korea Institute of Building Construction
    • /
    • v.2 no.1
    • /
    • pp.131-138
    • /
    • 2002
  • There is a problem to be solved for improvement of durability and safety supervision. When you do the waterproofing work of main concrete from the design stage, the material and method of construction need to be correctly applied to appropriate circumstance conditions. Epoxy have mostly been used for concrete water tank structure. Lately, lots of subjects on adaption of polyurea resin waterproofing and anticorrosive are under discussion. Then, we attempt to approach by evaluating and comparing every capabilities with another waterproofs in this study. Performance evaluation items include the adherence performance, the imprint of seal performance, temperature dependence performance, promotion weatherizing ability, Inner chemical performance. drinking water eruptive performance. Through the experiment analysis, we found that the polyurea resin waterproofing membrane is dominantly superior to other waterproofs. According to this study, we suggest the polyurea resin waterproofing membrane as a new waterproofing material for concrete structure.

Electrochemical Characteristics of Metal Coated Graphite for Anodic Active Material of Lithium Secondary Battery (금속 코팅된 흑연 입자로 제조된 전극의 전기화학적 특성)

  • Choi, Won-Chang;Lee, Joong-Kee;Byun, Dong-Jin;Cho, Byung-Won
    • Journal of the Korean Electrochemical Society
    • /
    • v.6 no.2
    • /
    • pp.103-112
    • /
    • 2003
  • Various kinds of metals were coated on synthetic graphite in order to investigate the relationship between film characteristics and their electrochemical performance. Gas suspension spray coating method was employed for the coating of synthetic graphite. In our experimental range, all of the metal coated synthetic graphite showed the higher capacity than that of raw material at high C-rate mainly due to decrease in impedance of passivation film. In cyclic voltammetry experiments, silver-coated and tin-coated graphite anodes found the lithium-alloy reaction. Considering smaller amount of metal coating, the most increase in discharge capacity was caused by improvement of conductivity of the electrode. When single-component metal was coated, silver-coated graphite anode exhibited the highest discharge capacity and better cycleability. Double components of silver-nickel coated active material showed the highest discharge capacity, rate capability and the best cycle performance in the range of our experiments.

Improvement of Electrochemical Performance of Lithium-ion Secondary Batteries using Double-Layered Thick Cathode Electrodes

  • Phiri, Isheunesu;Kim, Jeong-Tae;Kennedy, Ssendagire;Ravi, Muchakayala;Lee, Yong Min;Ryou, Myung-Hyun
    • Journal of the Korean Electrochemical Society
    • /
    • v.25 no.1
    • /
    • pp.32-41
    • /
    • 2022
  • Various steps in the electrode production process, such as slurry mixing, slurry coating, drying, and calendaring, directly affect the quality and, consequently, mechanical properties and electrochemical performance of electrodes. Herein, a new method of slurry coating is developed: Double-coated electrode. Contrary to single-coated electrode, the cathode is prepared by double coating, wherein each coat is of half the total loading mass of the single-coated electrode. Each coat is dried and calendared. It is found that the double-coated electrode possesses more uniform pore distribution and higher electrode density and allows lesser extent of particle segregation than the single-coated electrode. Consequently, the double-coated electrode exhibits higher adhesion strength (74.7 N m-1) than the single-coated electrode (57.8 N m-1). Moreover, the double-coated electrode exhibits lower electric resistance (0.152 Ω cm-2) than the single-coated electrode (0.177 Ω cm-2). Compared to the single-coated electrode, the double-coated electrode displays higher electrochemical performance by exhibiting better rate capability, especially at higher C rates, and higher long-term cycling performance. Despite its simplicity, the proposed method allows effective electrode preparation by facilitating high electrochemical performance and is applicable for the large-scale production of high-energy-density electrodes.

축소(Ⅰ) 수정형 엔진의 연소 시험

  • Kim, Young-Han;Kim, Yong-Wook;Lee, Jae-Yong;Moon, Il-Yoon;Ko, Young-Sung;Lee, Soo-Yong
    • Aerospace Engineering and Technology
    • /
    • v.1 no.1
    • /
    • pp.147-152
    • /
    • 2002
  • In the preceding tests of Sub.(Ⅰ) engines, it was observed that the heat resistant capability of the engines was not enough, and the design of Sub.(Ⅰ) engines was modified to satisfy the mission requirement. Sub.(Ⅰ) Mod. engines have three major design parameters - the arrangement of main injectors, the impinging angle of main injectors and thermal barrier coating. More than 20 experiments were carried out to evaluate engine performance and heat resistance capability with respect to design parameters. Analysing the result of Sub.(Ⅰ) and Sub.(Ⅰ) Mod. engine tests, it is found that the decreased impinging angle, adopting the H-type arrangement(rather than radial type arrangement), and adopting the thermal barrier coating can increase heat resistance capacity substantially. The result show that the performance variation by design change is below 5 percents and the radial type arrangement of injectors has higher performance than H-type. However, the performance of 15°impinging angle engine is higher than that of 20°impinging angle engine, which is inconsistent to our expectation. High frequency instabilities may cause such phenomenon, which will be verified by a series of tests.

  • PDF

Photocatalytic Cell Disruption of Giardia lamblia in a $UV/TiO_2$ Immobilized Optical-Fiber Reactor

  • YU , MI-JIN;KIM, BYUNG-WOO
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.6
    • /
    • pp.1105-1113
    • /
    • 2004
  • Disinfection of a waterborne pathogenic protozoa, Giardia lamblia, by the conventional chlorine method has been known to be difficult. An alternative disinfection has been carried out by using a UV -light illuminating optical­fiber photoreactor. Light intensity diffused from one piece of a clad-removed optical-fiber was $1- 1.5{\mu}Em^{-2}s^{-1}$. Disinfection capability in a UV -light irradiated optical-fiber reactor suspended with 0.01 g $TiO_{2}\;dm^{-3}$ was 1.4 times that in the same reactor without $TiO_{2}$ photocatalysts. To resolve the absorption and scattering of UV light by the particles themselves as well as the difficulty of recycling particles in the slurry­type reactor, $TiO_{2}$ which was obtained by a hydrothermal method, was immobilized on clad-removed optical fibers. Such pretreatment of fiber surface resulted in an excellent transparency, which enhanced the UV light to diffuse laterally from a fiber surface. Coating time of the prepared solution by the hydrothermal method was not effective after more than two times. Disinfection capability in the $TiO_{2}$-immobilized optical-fiber reactor was $83\%$ in 1 h at $40^{\circ}C$, which was slightly higher than $76\%$ at $22^{\circ}C$ and $68\%$ at $10^{\circ}C$. Disinfection capability at $22^{\circ}C$ increased from $74\%$ at an initial pH of 3.4, through $76\%$ at pH 6.5, to $87\%$ at an initial pH of 10. Oxygen supply with air-flow rate of 5 $cm^3\;min^{-1}$ did not seem to increase the disinfection capability with UV /immobilized $TiO_2$.

A Study on the Improvement of the Electrochemical Performance of Graphite Anode by Controlling Properties of the Coating Pitch (코팅 피치의 물성제어를 통한 흑연 음극재의 전기화학 성능 향상 연구)

  • Kim, Bo Ra;Kim, Ji Hong;Kang, Seok Chang;Im, Ji Sun
    • Applied Chemistry for Engineering
    • /
    • v.33 no.5
    • /
    • pp.459-465
    • /
    • 2022
  • A pitch coating method was proposed for the purpose of improving the electrochemical properties of natural graphite. The synthesis conditions of pitch coating were optimized via measuring electrochemical properties of pitch-coated graphite anodes. As the synthesis temperature increased, the thermal stability was improved in addition to an increase in the softening point and residual carbon weight. However, the synthesis temperature of 430 ℃ resulted in the synthesis of a large amount of NI (NMP Insoluble) due to excessive condensation reaction. As the surface uniformity and coating thickness increased due to high thermal stability, the initial coulombic efficiency and rate capability of the pitch-coated graphite were improved. However, the graphite coated with the pitch containing excessive NI showed lower electrochemical properties than the uncoated graphite. NI had low dispersibility and formed spheres after heat treatment, so it formed the heterogeneous and thicker SEI layer. The optimum conditions for forming a uniform surface and an appropriate coating layer were investigated.