• Title/Summary/Keyword: Coating Speed

Search Result 448, Processing Time 0.029 seconds

Studies on the Blistering Resistance(I) - The influence of pigment ratio on blistering resistance - (블리스터링에 관한 연구(제1보) - 안료의 배합비가 블리스터링에 미치는 영향 -)

  • Lim, Won-Seok;Ha, Young-Baeck;Kim, Chang-Keun;Lee, Yong-Kyu
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.39 no.2 s.120
    • /
    • pp.25-30
    • /
    • 2007
  • Recently the use of web offset printing has been increasing, which can provide high print speed, mass production, and high print quality. However, high speed web offset printing has frequently undergone a blistering problem when the printed paper passes through hot air dryers. Blistering occurs in the middle of the base paper or in the coating layer. This paper focused on the blistering occurring in the base paper. In order to elucidate the effect of pigment ratio on blistering, 6 types of coating color were prepared with varying GCC/clay ratios and printability and blistering were investigated focusing on structure changes in the coating layer. When the clay content in the coating layer was increased, surface roughness and surface strength were decreased and paper gloss was increased. In addition, it was found that the coating layer structure with high clay content, which contains lots of discontinuous pores, hindered water vapors to penetrate out and, as a result, blistering occurred.

Effect of the Microtip Length in a Slot-die Head on Fine Stripe Coatings (미세 스트라이프 코팅에 미치는 슬롯 다이 헤드 마이크로 팁 길이의 영향)

  • Lee, Jinyoung;Park, Jongwoon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.4
    • /
    • pp.69-74
    • /
    • 2019
  • The aim of this work is to investigate the effect of the microtip length in a slot-die head on coating of a fine poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) stripe. To this end, we have employed a meniscus guide with a 150-㎛-wide microtip and performed roll-to-roll slot-die coatings by varying its length between 500 ㎛ and 50 ㎛. When the microtip length is 150 ㎛ or shorter, we have observed three unexpected phenomena; 1) though the solution spreads much wider than the microtip width, yet the coated stripe width is almost the same as the microtip width, 2) the stripe width decreases, but the stripe thickness is rather increased with increasing coating speed at a fixed flow rate, 3) we obtain stripes much narrower than the microtip width at high coating speeds. It is due to the fact that 1) the meniscus is not well controlled by a short microtip, 2) the main stream of solution from the outlet is very close to the substrate and thus the distributed solution along the head lip merges with the main stream, and 3) the solution is not spread over the entire microtip end at high coating speeds, causing a tiny wobble in the meniscus. Using the 150-㎛-wide and 250-㎛-long microtip, we have fabricated 153-㎛-wide and 94-nm-thick PEDOT:PSS stripe at the maximum coating speed of 13 mm/s. To demonstrate its applicability in solution-processable organic light-emitting diodes (OLEDs), we have also fabricated an OLED device with the fine PEDOT:PSS stripe and obtained strong light emission from it.

A Numerical Study on the Combined Flow and Evaporation During Spin Coating Process (증발을 고려한 회전코팅 공정에 대한 수치해석적 연구)

  • Im, Ik-Tae;Kim, Kwang-Sun
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.59-64
    • /
    • 2001
  • The fluid flow, mass transfer and film thickness variation during a wafer spin coating process are numerically studied. Governing equations for the cylindrical coordinates are simplified using the similarity transformation and solved efficiently using the finite difference method. Concentration dependent viscosity and the binary diffusivity of the coating liquid are used in the analysis. The time variational velocity components of the coating liquid and the film thickness are analyzed according to the various spin speed. When the evaporation is considered, the flow decease in the early times due to the increase of the viscosity and the resultant flow resistance. Effects of the two film thinning mechanism, the flow-out and evaporation are also considered in the analysis.

  • PDF

An advanced PVD TiAIN multilayer coating for severe cutting conditions (극한 절삭조건에 적합한 새로운 다층 TiAIN 코팅)

  • 김종성
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.783-791
    • /
    • 2000
  • Increasing demands in productivity are propelling the development of new manufacturing methods like hard machining, high speed cutting (HSC) or machining of difficult to machine materials. In these processes the toois are subjected to very severe mechanical, tribological and thermal loads. They fail prematurely by abrasion, cratering, edge breakage and cold welding. The performance of such tools will be enhanced by better and more wear resistant coatings. The development of these new coatings shows a clear trend towards complex multi-component and multi-layer configurations. TiAIN multilayer coating belongs to these coatings for the new cutting tool generation. This paper tries to explain the benefits of the new coatings. TiAIN multilayer coating offers the following advantages: reduction of manufacturing costs. boost productivity, and lower coolant procurement, conditioning and disposal costs.

  • PDF

Experimental Study on Effect of Furnace Temperature on TiN-Coating by Arc Ion Plating (AIP 코팅법에서 로의 온도가 TiN 코팅에 미치는 영향에 관한 실험적 연구)

  • Kim H. J.;Lee S. W.;Joun M. S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.401-406
    • /
    • 2005
  • In this paper, both effect of TiN-coating and effect of temperature in TiN-coating by arc ion plating on surface characteristics of TiN coated SKH51 steel are investigated by experiments. Hardness, surface roughness, TiN coating thickness and adsorption force are measured in order to evaluate the effects. For evaluation of the experimental data, the two-way ANOVA method is used. It is concluded that the furnace temperature in the rang of $400^{\circ}C\~500^{\circ}C$ in AIP processing has very little influence on the TiN coating of the SKH51 steels.

  • PDF

The relation of TiN coating condition of end-mill and cutting force increase rate (엔드밀의 TiN 코팅조건과 절삭력 증가율과의 관계)

  • 최석우;이위로;최광진;백영남
    • Journal of the Korean institute of surface engineering
    • /
    • v.34 no.4
    • /
    • pp.337-341
    • /
    • 2001
  • TiN coating of high speed end mill is recently generalized. The study of coating layer using ion plating is mainly about the coating method and the why of the longer life of coated tools. In CNC machning process, metal cutting isn't carry out until the tools including the end-mill and so on are fractured. Namely, it is difficult precision processing when the cutting force of the cutting tool is near the limit the fracture cutting force. So, the estimate of the life by wear and fracture is important. Therefore, this study is about the method to estimate the capacity of the coating layer in relation to the tendency of cutting force and the influence of the cutting capacity of coated end-mill by the condition N2, Ar, temperature. The cutting length is in inverse proportion to the cutting force ratio. So, the life of the TiN coated end mill can be predicated by the ratio of the increase of the cutting force.

  • PDF

An Evaluation of Skiving Cutting Characteristics of TiCN PACVD Coating Caribide Hob (TiCN PACVD코팅 초경호브의 Skiving절삭특성 평가)

  • Cheon, Jong-Pil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.2
    • /
    • pp.471-477
    • /
    • 2012
  • SCM420 steel tempered after performing gear hove PACVD carbide coating on the surface after the cutting surface hardness was high. Difficult-to-cut, without coating is classified as mild as large, including materials like mild, high strength that improves tool life and productivity have limited availability. Drive to improve it in the TiCN-coated carbide call for war to the finish coating on cutting a hob skiving good workability, tool wear less, 2.5-fold increase in tool life results were obtained. Experiments using CNC Skiving hobbing machine with wet cutting conditions, cutting speed and feed rate to apply a variety of the tool wear and surface roughness data were obtained. Results from condition 2 (V = 200m/min F = 0.7mm/rev) cutting speed feed mark the cutting surface microstructure and surface roughness Rmax $4.7{\mu}m$(Ra $1.19{\mu}m$) of the data was obtained.

Improvement of Zinc Coating Weight Control for Transition of Target Change

  • Chen, Chien-Ming;Lin, Jeng-Hwa;Hsu, Tse-Wei;Lin, Rui-Rong
    • Corrosion Science and Technology
    • /
    • v.9 no.3
    • /
    • pp.105-108
    • /
    • 2010
  • The product specification of the Continuous Hot Dip Galvanizing Line (CGL) changes and varies constantly with different customers' requirements, especially in the zinc coating weight which is from 30 to 150 g/$m^2$ on each side. Since the coating weight of zinc changes often, it is very important to reduce time spent in the transfer of target values changed for low production cost and yield loss. The No.2 CGL in China Steel Corporation (CSC) has improved the control of the air knife which is designed by Siemens VAI. CSC proposed an experiment design which is an $L_9(3^4)$ orthogonal array to find the relations between zinc coating weight and the process parameters, such as the line speed, air pressure, gap of air knife and air knife position. A non-linear regression formula was derived from the experimental results and applied in the mathematical model. A new air knife feedforward control system, which is coupled with the regression formula, the air knife control system and the process computer, is implemented into the line. The practical plant operation results have been presented to show the transfer time is obviously shortened while zinc coating weight target changing and the product rejected ratio caused by zinc coating weight out of specification is significantly reduced from 0.5% to 0.15 %.

A Study on the Lift-off Characteristics of an Air-lubricated Bump Foil Journal Bearing (공기윤활 범프 저어널 베어링의 부상 특성에 관한 연구)

  • 이남수;이용복;최동훈;김창호
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.06a
    • /
    • pp.236-242
    • /
    • 2001
  • In this paper the effect of bump compliance, load, and the number of pad on the lift-off speed is studied. When the load is greater and bump compliance lower, the shaft is lifted off at higher rotating speed. And when the load is applied near the center of pad, lift-off speed is lower. When the number of pad increases, the lift-off speed is higher. The lift-off characteristics can be used to lengthen the life time of the coating and design the rotating machinery supported by bump bearings.

  • PDF

Improvement of Adhesion Strength of High Temperature Plasma Coated Aluminum Substrate with Aluminum-Alumina Powder Mixture (알루미늄 기지에 알루미늄-알루미나 혼합분말을 이용한 고온플라즈마 열분사 코팅층의 밀착강도 향상기구)

  • Park, Jin Soo;Lee, Hyo Ryong;Lee, Beom Ho;Park, Joon Sik
    • Korean Journal of Materials Research
    • /
    • v.25 no.5
    • /
    • pp.226-232
    • /
    • 2015
  • High temperature plasma coating technology has been applied to recover damaged aluminum dies from wear by spraying pure aluminum and alumina powder. However, the coated mixed powder layer composed of aluminum and alumina often undergoes a detachment from the substrate, making the coated substrate die unable to maintain its expected life span. In this study, in order to increase the bonding strength between the substrate and the coating layer, a pure aluminum layer was applied as an intermediate bond layer. In order to prepare the specimen with variable bond coating conditions, the bond coat layers with a various gun speed from 10 cm/sec to 30 cm/sec were prepared with coating cycle variations ranging from three to nine cycles. The specimen with a bond coat layer coated with a gun speed of 20 cm/sec and three coating cycles exhibited ~13MPa of adhesion strength, while the specimen without a bond coat layer showed ~6 MPa of adhesion strength. The adhesion strength with a variation of bond coat layer thickness is discussed in terms of coating parameters.