• Title/Summary/Keyword: Coating Process

Search Result 2,258, Processing Time 0.03 seconds

Flow Behavior of Thin Polymer Film in Spinning Coating Process of Blu-ray Disc Cover layer (블루레이 디스크의 커버레이어 스핀코팅 시 폴리머 거동에 관한 연구)

  • Ban J. H.;Shin H. G.;Kim B. H.;Kim H. Y.;Lee H. G.;Son S. G.;Shin J. K.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.113-116
    • /
    • 2005
  • In this paper, a computational and experimental analysis about the flow behavior of thin polymer film in the spin coating process for stable cover layer coating of a blu-ray disc is described. The blu-ray disc, a next-generation optical disc format over 25GB, consists of a 1.1mm thick substrate and a 0.1mm tick cover layer. Generally, cover layer on the blu-ray disc is made by the polymer spin coating process. However, it is hard to secure sufficient coating uniformity around the rim on the cover layer. In order to get the uniform thickness deviation and to minimize the bead around the rim, the edge of the disc substrate can be modified into various shapes around the rim on the disc and analyzed with various parameters, such as surface tension, viscosity, and rotation speed, etc. The optimal shape of the rim was tried to get by 3 dimensional computer simulation of the polymer expulsion process.

  • PDF

The Influence of Process Variables on the Thin Film Growth of Metal-Halide Perovskites by the Solution Shear Coating (전단코팅 공정으로 제조하는 금속-할라이드계 페로브스카이트의 박막성장에 미치는 공정변수의 영향 고찰)

  • Choe, Jihye;Song, Jiho;Jeong, Jiyoung;Chung, Choong-Heui;Kim, Jaekyun;Hong, Ki-Ha
    • Journal of the Korean institute of surface engineering
    • /
    • v.52 no.1
    • /
    • pp.6-15
    • /
    • 2019
  • Metal-halide perovskite (MHP) solar cell is a promising candidate for next-generation flexible devices and the BIPV (Building-integrated photovoltaics) because it can exhibit high power conversion efficiencies over 23%, good bendability and low processing cost. However, MHP solar cells are commonly fabricated by the spin coating that is not a reliable method to produce large-scale commercial solar cells. A shear coating can be one of the potential candidates for the large-scale deposition method of MHP films. In this work, the influences of the process parameters such as solvents of precursor solution, substrate temperature, concentrations of precursor solution, and annealing time on the thin film growth of MHP were investigated for the shear coating process. This study presents the possibility of the shear coating process for large-scaled perovskite film fabrication and reveals the role of process condition in the thin film growth of perovskites.

Continuous Slot-die coating & Calcination process for long length MOD-YBCO coated conductors (연속 슬롯-다이 코팅 및 하소공정을 이용한 MOD-YBCO 초전도 선재 제조)

  • Chung, Kook-Chae;Yoo, Jai-Moo;Ko, Jae-Woong;Kim, Young-Kuk
    • Progress in Superconductivity and Cryogenics
    • /
    • v.9 no.1
    • /
    • pp.14-17
    • /
    • 2007
  • The slot-die coating & calcination process was adopted to fabricate the long YBCO precursor films on the buffered metal tape for the $2^{nd}$ generation coated conductors. To obtain the smooth and crack-free surface of long YBCO precursor films, the parameters of slot-die coating and the process variables of calcination step must be optimized simultaneously in reel-to-reel method. Among the parameter of slot-die coating process, the viscosities of the precursor solution was controlled from 60cP to 200cP to obtain the thicker films from on single coating. The slot-die gap, the injection rate of precursor solution, the moving speed of buffered metal tape etc. are controlled lot the full coverage and smooth surface of YBCO precursor films. The slot-die coated films are moved through the tube furnace with predetermined heating profiles in humid oxygen ambient The YBCO precursor films was identifed with $Y_2O_3,\;BaF_2$, and CuO phase by XRD and consisted of fine grains of about 20nm size observed by FE-SEM. The YBCO films show the critical current density over $MA/cm^2$ using the precursor films formed by the continuous slot-die coating & calcination process.

A Statistical Analysis for Slot-die Coating Process in Roll-to-roll Printed Electronics (롤투롤 슬롯-다이 대면적 코팅 공정 최적화를 위한 통계적 모델링 방법)

  • Park, Janghoon;Lee, Changwoo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.5
    • /
    • pp.23-29
    • /
    • 2013
  • Recent advances in printing technology have increased the productivity of the roll-to-roll (R2R) printing process for printed circuitry. In the R2R printed electronics, characteristics of printed and coated layers are one of the most important issues that determine the functional quality of final products. The slot-die technology can coat a large area with high uniformity using low-viscosity materials; determining the process parameters is important to obtain excellent coating qualities. In this study, a viscocapillary model was used to predict qualities of coated layers and patterns. On the basis of analysis results, a novel meta model was derived using design of experiment methodology to improve accuracy. Sensitivity analysis was performed to define major parameters in R2R slot-die coating process. The coating speed was found to most significantly affect the coated layer thickness and was easily controlled. The performance of the proposed model is verified through experimental studies. Based on the statistical analysis results, R2R slot die process can be optimized to guarantee a desired thickness.

Luminance efficiency of PDP having phosphor layers formed via osmosis coating process

  • Park, Do-Young;Kim, Yong-Seog
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.227-230
    • /
    • 2004
  • Phosphor layers on rear plate of PDP were formed via osmosis coating process in an attempt to improve thickness uniformity of phosphor layer and eventually to enhance luminance and its efficiency of plasma display panel. The phosphor layers were formed uniformly not only on the sidewalls of barrier ribs but also on the dielectric layer of rear plate by the process. The processing parameters affecting the thickness uniformity of the phosphor layer formed by the osmotic coating process were investigated.

  • PDF

Manufacturing and Macroscopic Properties of Cold Sprayed Cu-Ga Coating Material for Sputtering Target

  • Jin, Young-Min;Jeon, Min-Gwang;Park, Dong-Yong;Kim, Hyung-Jun;Oh, Ik-Hyun;Lee, Kee-Ahn
    • Journal of Powder Materials
    • /
    • v.20 no.4
    • /
    • pp.245-252
    • /
    • 2013
  • This study attempted to manufacture a Cu-Ga coating layer via the cold spray process and to investigate the applicability of the layer as a sputtering target material. In addition, changes made to the microstructure and properties of the layer due to annealing heat treatment were evaluated, compared, and analyzed. The results showed that coating layers with a thickness of 520 mm could be manufactured via the cold spray process under optimal conditions. With the Cu-Ga coating layer, the ${\alpha}$-Cu and $Cu_3Ga$ were found to exist inside the layer regardless of annealing heat treatment. The microstructure that was minute and inhomogeneous prior to thermal treatment changed to homogeneous and dense with a more clear division of phases. A sputtering test was actually conducted using the sputtering target Cu-Ga coating layer (~2 mm thickness) that was additionally manufactured via the cold-spray coating process. Consequently, this test result confirmed that the cold sprayed Cu-Ga coating layer may be applied as a sputtering target material.

Property and formation behavior of TiAlSiWN nanocomposite coating layer by the AIP process (AIP 공정 적용 TiAlSiWN 나노 복합체 코팅층의 형성 거동 및 특성 평가)

  • Lee, Jeong-Han;Park, Hyeon-Guk;Jang, Jun-Ho;Hong, Seong-Gil;O, Ik-Hyeon
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.97.2-97.2
    • /
    • 2018
  • This study formed a hard TiAlSiWN coating layer using Ti, Al, Si and W raw powders that were mechanically alloyed and refined. The TiAlSi and TiAlSiW coating targets were fabricated using a single PCAS process in a short time with the optimal sintering conditions. The coating targets were deposited on the WC substrate by forming coating layers using TiAlSiN and TiAlSiWN nitride nano-composite structures with an AIP process. The properties of the nitride nano-composite coating layers were compared according to the addition of W. The microstructure of the nitride nano-composite coating layer was analyzed, focusing on the distribution of the crystalline phases, amorphous phases ($Si_3N_4$), and growth orientation of the columnar crystal depending on the addition of W. The mechanical properties of the coating layers were exhibited a hardness of approximately $3,000kg/mm^2$ and adhesion of about 117.77N in the TiAlSiN. In particular, the TiAlSiWN showed excellent properties with a hardness of more than $4,300kg/mm^2$ and an adhesion of about 181.47N.

  • PDF

The Composition of the Rare Earth Based Conversion Coating Formed on AZ91D Magnesium Alloy

  • Chang, Menglei;Wu, Jianfeng;Chen, Dongchu;Ye, Shulin
    • Corrosion Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.1-5
    • /
    • 2018
  • As structural materials, magnesium (Mg) alloys have been widely used in the fields of aviation, automobiles, optical instruments, and electronic products. There are few studies on the effect of coating conditions on the compositional variation during the formation process of the conversion coatings. Rare-earth based conversion coating on AZ91 magnesium alloy was prepared in ceric sulfate and hydrogen peroxide contained solution. The element composition and valence as well as their distribution in the coating were analyzed with energy dispersive X-ray spectroscopy (EDS), Electron probe micro-analyzer (EPMA), X-ray photoelectron spectroscopy (XPS). The effect of treating process on the element composition were also studied. It was found that the conversion coating surface consists of Mg, Al, O, Ce, and the weight content of Ce in the coating was affected by the treating solution concentration and immersion time; the Ce element was distributed in the coating non-uniformly and existed in the form of $Ce^{+3}$ and $Ce^{+4}$, while the O element existed in the form of $OH^-$, $O^{2-}$, $H_2O$. Based on microscopic analysis results, the electrochemical deposition mechanism on the micro-anode and micro-cathode in the process of the coating growth was suggested.

Effect of sodium hexa-meta phosphate as pore-sealing agent on the corrosion performance of Al-Zn coating deposited by twin-wire arc thermal spray process in 3.5 wt.% NaCl solution (3.5 중량% NaCl 용액에서 쌍선 아크 용사 공정으로 증착된 Al-Zn 코팅의 부식 성능에 대한 기공 밀봉제로서의 헥사메타인산나트륨의 영향)

  • Singh, Jitendra Kumar;Adnin, Raihana Jannat;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.81-82
    • /
    • 2022
  • Al and Zn are used to protect the steel structures from corrosion. In the present studies, 15Al-85Zn alloy wires has been used for the deposition of coating by arc thermal spray process. Moreover, this process of coating exhibited severe defects formation, therefore, this coating was post-treated with different concentrations i.e. 0.05, 0.1 and 0.5M sodium hexa meta phosphate (Na6[(PO3)6]: SHMP) to fill to defects of deposited coatings and assessed their corrosion resistance in 3.5 wt.% NaCl solution with exposure periods. After the treatment, the porosity of the coating reduced significantly by formation of composite oxide films onto the coating surface. Initially, 0.5 M SHMP treated coating exhibited highest in total impedance due to significant reduction of porosity but once the exposure periods are extended, the composite oxides are dissolved, thus, total impedance is decreased.

  • PDF

Electrochemical Properties of Needle Coke through a Simple Carbon Coating Process for Lithium Ion Battery (침상 코크스의 피치 코팅에 따른 리튬 이차전지 탄소계 음극소재의 전기화학적 특성)

  • Hwang, Jin Ung;Lee, Jong Dae;Im, Ji Sun
    • Applied Chemistry for Engineering
    • /
    • v.31 no.5
    • /
    • pp.514-519
    • /
    • 2020
  • Graphite materials for lithium ion battery anode materials are the most commercially available due to their structural stability and low price. Recently, research efforts have been conducted on carbon coatings by improving side reactions at the edge site of carbon materials. The carbon coating process has classified into a CVD by chemical reaction, wet coating process with solvent and dry coating by mechanical impact. In this paper, the rapid crush/coating process was used to solve the problem of which only few parts of the carbon precursor (pitch) can be used and also environmental problems caused by solvent removal in the wet coating process. When the ratio of needle coke to pitch was 8 : 2 wt%, and the rapid crush/coating process was carried out, it was confirmed that the fracture surface was coated by pitch. The pitch-coated sample was treated at 2400 ℃ and 41.8% improvement in 10C/0.1C rate characteristic was observed. It is considered that the material simply manufactured through the simple crush/coating process can be used as an anode electrode material for a lithium ion battery.