• Title/Summary/Keyword: Coating Flow

Search Result 402, Processing Time 0.025 seconds

A Study on Design of Nozzle Tip for Airless Spray Coating (에어리스 스프레이 도장용 노즐 팁 설계에 관한 연구)

  • Kim, Dong-Keon;Kim, Soon-Kyung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.6
    • /
    • pp.183-188
    • /
    • 2012
  • This study was carried out to design the spray nozzle tip for airless spray coating. Airless spray coating is the process of coating an object with a liquid spray of paint or other fluid. The nozzle tip controls the fluid flow rate and creates back pressure in the system. The nozzle tip also defines the spray pattern by the size and shape of the orifice. The spray pattern of nozzle tip was investigated numerically using ANSYS CFX ver. 14.0. It was observed that performance result of designed nozzle tip was correspond well, compared with that of GARCO nozzle tip.

Experimental study on the hydrophilic performance of pre-coated aluminum foil (알루미늄 호일의 친수코팅 성능 개선에 관한 실험적 연구)

  • 김영생;길용현;박환영;윤백;김자수소;김병열
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.6
    • /
    • pp.725-732
    • /
    • 1999
  • It is usual to use hydrophilic-coated aluminum foil for evaporator fin of air-conditioners to reduce air flow resistance caused by the water droplets condensed on the fin surface. The major effect of a hydrophilic coating is to reduce the contact angle of the condensate and prevent bridging of the condensate between the adjacent fins. The performance of hydrophilic coating generally tends to be degraded as it is used since the coating material is washed down by the condensate. In the present work, several types of hydrophilic coatings were evaluated in terms of durability of hydrophilicity, corrosion resistance and heat resistance. Results showed that an improved hydrophilic coating of resin type presented superb qualify in terms of durability and corrosion resistance while having almost the same level of qualify in heat resistance compared with the others.

  • PDF

Case Study on the Electrostatic Hazards in the Coating Mechanical System (도장설비에서의 정전기 재해 사례 연구)

  • Kim, Gil-Tae;Jung, Young-Man;Lee, Jae-Keun
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.602-606
    • /
    • 2006
  • The electrostatic is well known phenomena. The fires and explosions caused by electrostatic occur often in the coating mechanical system. This paper presents various cases of electrostatic hazards, reasons why electrostatic hazards are happened, and methods for preventing electrostatic hazards. Generally the electrostatic can be lead to corona discharging, streaming electrification, and impinging electrification in the coating process. Corona discharging happens at electrostatic spray gun with 70 kV. Streaming electrification occurs at mixing process between paint and thinner, and transportation process with thinner. Impinging electrification is shown when the thinner are sprayed to drums. For the purpose of preventing the electrostatic discharge and damage, conductors should be ground, surface electric potential of should be decreased in using electrostatic shielding and ground, and flow of thinner should be controlled acceptable velocity.

  • PDF

The Chemical Vapor Deposition of TiN on Cemented Tungsten Carbide Cutting Tools (초연합금절단공구상에 TiN의 화학증착피막에 관한 연구)

  • 이상래
    • Journal of the Korean institute of surface engineering
    • /
    • v.15 no.3
    • /
    • pp.138-145
    • /
    • 1982
  • The effects of the simultaneous variations of the ratio of feed gases(H2/N2 Flow ratio), feed gas flow rate (H2/N2, total-flow rate) and partial pressures of TiCl4 (PTiCl41) as well as deposition time and cobalt content of the substrate on the deposition rate of the TiN Coated Cemented Tungsten Carbide Tools were investigated. Deposition was carried out in the temperature range of 930$^{\circ}C$-1080$^{\circ}C$ and an activation energy of 46.5 Kcal/mole can be calculated. Transverse rupture strength was noticeably reduced by the TiN coating on the virgin surfa-ce of Cemented Tungsten Carbide, the extent of which was decreased according to the coa-ting thickness. Microhardness value observed on the work was in the range of 1700∼2000kg/mm, which were in well agreement with the value of bult TiN. The wear resistance of TiN layers was performed by turning test and it was observed that crater and flank resistance remarkably enhanced by TiN coating.

  • PDF

Preparation of Granule Powders for Thermal Spray Coating by Utilization of Pyrophyllite Minerals

  • Kim, Yong-Hyeon;Shin, Pyung-Woo;Lee, Sang-Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.5
    • /
    • pp.557-562
    • /
    • 2016
  • Pyrophyllite granule powders for thermal spray coating were successfully prepared through spray drying process. To produce a stable slurry, commercial pyrophyllite powder of $45{\mu}m$ in size was ball-milled for reduction of the size to $2{\sim}3{\mu}m$ and a dispersant was added to control the viscosity. Dense and spherical granules (average granule size : $59{\mu}m$) were prepared under conditions of 12,500 rpm for rotation velocity of the atomizer and 100 cps for slurry viscosity. The granules were then heat treated at $1,200^{\circ}C$ for proper handling strength and flow properties. The final granules had an apparent density of $0.725g/cm^3$ and a flow rate of 2.5 g/sec, which represent excellent properties to be used as the granule powder for thermal spray coatings.

Pyrolytic Carbon Coating on A Simulated Fuel by Fluidized Bed Type Chemical Vapour Deposition

  • Park, Y.;Kim, Bong G.;Lee, Young W.;Dong S. Sohn
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.05b
    • /
    • pp.159-164
    • /
    • 1997
  • Pyrolytic carbon layer was coated on A1203 balls by fluidized bed type chemical vapour deposition unit to develop the coating technology for the preparation of coated nuclear fuel. The deposition was carried out at the temperature ranges between 110$0^{\circ}C$ and 130$0^{\circ}C$ with various gas contents and flow rates. Source and carrier gas were propane and argon, respectively. X-ray analysis shows that the deposition layer was typical carbon spectra. The growth rate of carbon layer depended on the amount of source gas and the deposition temperature. For the alumina balls with 2mm in diameter, the deposition rate was 11${\mu}{\textrm}{m}$/hr in the flow gases containing 30% source gas at 130$0^{\circ}C$ with a total flow rate of 2.0$\ell$/min. Microstructural observation of the deposits with scanning electron microscope revealed that the deposits had relatively dense and isotropic structure. Chemical analysis by energy dispersive spectroscopy showed that the layer was pure carbon.

  • PDF

Structure Optimization of a Slot-Die Head with a Hydrophobic Micro-Patterns for Stripe Coatings (소수성 마이크로 패턴을 갖는 Stripe 코팅용 슬롯 다이 헤드 구조 최적화)

  • Yoo, Su-Ho;Lee, Jin-Young;Park, Jong-Woon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.2
    • /
    • pp.6-10
    • /
    • 2019
  • In the presence of $\mu-tip$ for narrow stripe coating, there appears lateral capillary flow along the hydrophilic head lip because the $\mu-tip$ has some resistance to flow. It was known to be suppressed by increasing the contact angle of the head lip. In this paper, we have demonstrated by computational fluid dynamics(CFD) simulations that it can also be suppressed by the formation of micro-patterns on the shim and meniscus guide embedded into the slot-die head. To optimize the micro-patterned structure, we have performed simulations by varying the groove width, depth, and clearance. In the absence of micro-patterns, it is shown by experiment and simulation that the solution spreads to a distance of $1,300{\mu}m$ from the ${\mu}-tip$. In the presence of micro-patterns with the groove width and clearance of $50{\mu}m$, the distance the solution spreads is reduced to $260{\mu}m$. However, no further suppression in the capillary flow is observed with micro-patterns with the groove width of $40{\mu}m$ or less. It is also observed that the capillary flow is not affected by the groove depth if it is larger than $10{\mu}m$. We have shown that the distance the solution spreads can be reduced further to $204{\mu}m$ by coating a hydrophobic material (contact angle of $104^{\circ}$) on the surface of micro-patterns having the groove width and clearance of $50{\mu}m$.

Thermal Barrier Efficiency and Endurance of Ni-Cr Coating in Liquid Rocket Engine Combustor (액체로켓엔진 연소기에 적용된 니켈-크롬 코팅의 열차폐 효율과 내구성)

  • Lee, Kwang-Jin;Lim, Byoung-Jik;Kim, Jong-Gyu;Han, Yeoung-Min;Choi, Hwan-Seok
    • Aerospace Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.138-143
    • /
    • 2009
  • Thermal barrier efficiency and endurance of coatings in liquid rocket engine combustor were evaluated for air plasma spray coating and electro/electroless plating. The result of firing tests has revealed occasional occurrence of local delamination of $ZrO_2$, NiCrAlY coating obtained by the method of air plasma spray in the region of supersonic flow and it necessitated a new coating method as a substitution. It was found that Ni-Cr coating by means of electro/electroless plating can substitute $ZrO_2$, NiCrAlY coatings of air plasma spray in terms of thermal barrier efficiency and endurance.

  • PDF

Analysis of impingement mixing for coating in injection mold (사출금형 안에서 코팅을 위한 충돌혼합에 관한 해석)

  • Kim, Seul-Woo;Lee, Ho-Sang
    • Design & Manufacturing
    • /
    • v.13 no.4
    • /
    • pp.1-9
    • /
    • 2019
  • In-mold Coating is a method that can simultaneously perform injection molding and surface coating in injection mold. The material used for coating is two-component polyurethane which is composed of polyol and isocyanate. L-type mixing head can be used to mix polyol and isocyanate uniformly, and inject them inside the mold cavity. The surface quality of the injection molded products by using in-mold coating depends on the mixing uniformity between main agent and hardener. In this study, flow analysis was performed to design a mixing head for uniform mixing of two-component polyurethane. Especially the effects of design parameters of mixing head on mixing uniformity and nozzle pressure were investigated. The parameters of mixing head were mixing chamber diameter, cleaning cylinder diameter, nozzle alignment angle in the horizontal and vertical direction, and cleaning piston position. It was found that optimal design values were mixing chamber diameter of 3.5 mm, cleaning cylinder diameter of 5.0 mm, nozzle horizontal/vertical alignment angles of 140°/160°, and cleaning piston position of 1.8 mm. The optimal values would be used to develop a two-component mixing head achieving an uniform mixing for in-mold coating.

A Study on Discrete Frequency Noise from a Symmetrical Airfoil in a Uniform Flow (에어포일 이산소음 특성에 관한 연구)

  • Kim, H. J.;Lee, S.;N. Fujisawa
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.365.2-365
    • /
    • 2002
  • The flow field around a symmetrical airfoil in a uniform flow under the generation of noise was studied by experiments and numerical simulation. The experiments are conducted by visualizing the surface flow over the airfoil with a shear-sensitive liquid-crystal coating and by measuring the instantaneous velocity field around the trailing edge of the airfoil. The numerical simulation was carried out by LES. (omitted)

  • PDF