• Title/Summary/Keyword: Coating Films

Search Result 1,360, Processing Time 0.028 seconds

Preparation of Water-Repellent Coating Films from Tetraethoxysilane and Chlorotrimethylsilane on PMMA Substrates (Tetraethoxysilane과 Chlorotrimethylsilane으로부터 PMMA 기재 위에 발수성 코팅 도막 제조)

  • Park, Jong Ho;Lee, Byung Wha;Song, Ki Chang
    • Korean Chemical Engineering Research
    • /
    • v.57 no.1
    • /
    • pp.124-132
    • /
    • 2019
  • Water-repellent coating solutions were synthesized by hydrolysis and polycondensation reactions with water using tetraethoxysilane (TEOS) and chlorotrimethylsilane (CTMS) as precursors. The solutions were coated on a PMMA sheet and thermally cured to prepare non-fluorinated water-repellent coating films. Coating films were characterized by water contact angles, UV-Vis transmittance and surface morphology. The contact angle of coating films prepared by varying the molar ratio of CTMS/TEOS to 0.6~1.0 exhibited a maximum value of $107^{\circ}$ when the CTMS/TEOS molar ratio was 0.8. The coating films showed a high transmittance over the visible range up to 90% when the CTMS/TEOS molar ratios were 0.6~0.8. However, when the molar ratios of CTMS/TEOS were 0.9~1.0, the transmittance of coating films was lower than 70% due to an uneven shape of the rough surface.

Development of chemical conversion coating technology by environment friendly method for Zn electroplated steel (아연 전기 도금 강의 환경친화적인 화성처리 기술 개발)

  • Kim, Seong-Jong;Kim, Jeong-Il;Jang, Seok-Ki
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.271-272
    • /
    • 2006
  • Zinc confers high corrosion resistance by acting as a sacrificial anode, and a zinc coating improves the appearance of steel. Chromate conversion coating (CCC) films are still one of the most efficient surface treatments for steel. Although such films can self-repair via the dissolution of Cr(VI), dissolved Cr(VI) have adverse effects on humans, and the environment. Therefore, we examined the corrosion protection property and morphology of colloidal silica conversion films as an alternative to CCC films. The corrosion behavior was investigated in 3% NaCl solution using electrochemical techniques, including electrochemical impedance spectroscopy, open circuit potential, and the salt spray test(SST). Corrosion was implied by the appearance of red rust on the specimen surface. In corrosion resistance at 3% NaCl solution, red rust appeared at 15-20, 55-70, and 83-98 days on Zn-electroplated steel, colloidal silica conversion-coated specimens, and CCC-coated specimens, respectively. In the salt spray test, the colloidal silica film provided better corrosion protection than CCC films, i.e., red rust appeared at 96 hours on the Zn-electroplated steel sheet, at 432 hours with the CCC films, and at 888 hours with silica conversion coating.

  • PDF

Properties of Polymethyl methacrylate (PMMA) for Polymer Gate Dielectric Thin Films Prepared by Spin Coating (Spin coating 공정을 이용한 Polymethyl methacrylate (PMMA) 박막의 polymer gate dielectric layer로써의 특성평가)

  • Na, Moon-Kyong;Kang, Dong-Pil;Ahn, Myeog-Sang;Myoung, In-Hye;Kang, Young-Taec
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.05b
    • /
    • pp.29-32
    • /
    • 2005
  • Poly (methyl methacrylate) (PMMA) is one of the promising representive of polymer gate dielectric for its high resistivity and sutible dielectric constant. PMMA (Mw=96700) films were prepared on p-Si by spin coating method. PMMA were coated compactively and flatly as observeed by AFM. MIS(Al/PMMA/p-Si) structure was made and capacitance-voltage (C-V) and current-voltage (I-V) measurements were done with PMMA films for different thermal treatment temperature. PMMA films were showed proper dielectric constant and breakdown voltage. Above the glass transition temperature PMMA films degraded. C-V measured at various frequencies, dielectric constant increased a little. The absence of hysteresis in the C-V characteristics, which eliminate the possibility of mobile charges in the PMMA films. The observed thermal stability, smooth surfaces, dielectric constant, I-V behavior implies PMMA formed by spin coating can be used as an efficient gate dielectric layer in OTFTs.

  • PDF

Preparation of $TiO_2$ thin films by coating-pyrolysis process of Ti-naphthenate (Ti-naphthenate의 코팅-열분해에 의한$TiO_2$ 박막의 제조)

  • 김진영;김승원;장우석;김현태;최상원
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.12 no.1
    • /
    • pp.7-10
    • /
    • 2002
  • $TiO_2$ thin films were prepared by coating and subsequent pyrolysis processes using Titanium-naphthenate as a raw material. $TiO_2$ thin films were made by spin-coating technique on the glass substrates, and heat treated at 45$0^{\circ}C$, The transmittance, refractive index, crystallinity and surface morphology of the $TiO_2$ thin films were measured by UV/Vis spec trophotometer, x-ray diffractometer and scanning electron microscope. $TiO_2$thin films on the slide glass showed the trans mittance of 70-90% and refractive index of 2.6 at 420 nm. The results of XRD and SEM showed that the $TiO_2$ thin films exhibited the anatase phase and the thread-like surface morphology.

Mechanical Properties of DLC Films and Duplex Plasma Nitriding/DLC Coating Treatment Process (DLC 박막과 복합처리(Nitriding/DLC)한 박막의 기계적 특성 비교)

  • Park, Hyun-Jun;Kim, Min-Chae;Kim, Sang-Sub;Moon, Kyoung-Il
    • Journal of the Korean institute of surface engineering
    • /
    • v.53 no.6
    • /
    • pp.306-311
    • /
    • 2020
  • In this work, diamond-like carbon (DLC) films are coated onto plasma nitrided AISI 4140 steel by DC-pulsed PECVD. One problem of DLC films is their very poor adhesion on steel substrates. The purpose of the nitriding was to enhance adhesion between the substrate and the DLC films. The white layer formation is avoided. Plasma nitriding increased adhesion from 8 N for DLC coating to 25 N for duplex coating. Duplex plasma nitriding/DLC coating was proven to be more effective in improving the adhesion. The purpose of the bond layer was to enhance adhesion between the substrate and the DLC films.

NH3 sensing properties of porous CuBr films prepared by spin-coating (스핀 코팅법으로 제작한 다공성 CuBr 필름의 암모니아 감응특성)

  • Kim, Sang-Kwon;Yu, Byeong-Hun;Yoon, Ji-Wook
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.6
    • /
    • pp.451-455
    • /
    • 2021
  • Porous copper bromide (CuBr) films are highly advantageous for detecting ammonia (NH3). The fabrication of porous CuBr films requires complex high-temperature processes or multistep processes. Herein, we report the uncomplicated preparation of porous CuBr films by a spin-coating method and the films' excellent NH3 sensing properties. The porous films were prepared by spin-coating 100, 150, and 200 mM CuBr solutions, and then dried in a vacuum oven for 2 h. All the films showed a high NH3 response; in particular, the film prepared using a 100 mM CuBr solution showed an extremely high response (resistance ratio = 852) to 5 ppm NH3. The film also showed fast response and recovery times, 272 s and 10 s respectively, even at room temperature. The outstanding NH3 sensing characteristics were explained in relation to the porosity and thickness of the prepared films. The high-performance NH3 sensors used in this study can be used for both indoor air quality and environmental monitoring applications.

Preparation of Hard Coating Solutions using Colloidal Silica and Glycidoxypropyl Trimethoxysilane by the Sol-Gel Method (Sol-Gel 법에 의해 Colloidal Silica와 Glycidoxypropyl Trimethoxysilane으로 부터 하드코팅 용액의 제조)

  • Kim, Dae Hyun;Song, Ki Chang;Chung, Jae Shik;Lee, Bum Suk
    • Korean Chemical Engineering Research
    • /
    • v.45 no.5
    • /
    • pp.442-447
    • /
    • 2007
  • In order to improve the surface hardness of transparent plastic films, organic-inorganic hybrid coating solutions were synthesized by the sol-gel method. The coating solutions were prepared by adding GPTMS (glycidoxypropyl trimethoxysilane) to a colloidal silica (12 nm) suspension. PC(polycarbonate) substrates were dipped into the coating solutions and dried at room temperature for 10 min before being cured at $80^{\circ}C$ for 30 min. The effect of the solution pH and GPTMS content was investigated on the properties of coating films. The pencil hardness and adhesion to substrates of the coating films, prepared at acidic condition (pH 4), showed better properties than those at neutral or basic conditions. Also, the pencil hardness and adhesion to substrates of the coating films increased with increasing GPTMS content.

A Study on the Tribological Characteristics of Thermally Evaporated Silver Films Assisted by Atomic Mixing (원자혼합법으로 증착된 은 박막의 트라이볼로지적 특성에 관한연구)

  • 양승호;공호성;윤희성
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.27-34
    • /
    • 2001
  • A new functionally gradient metal coating method using an atomic mixing technique was developed. In this work the effect of silver atomic mixing on the tribological characteristics of silver$.$ films. has been investigated experimentally. Atomic mixing was implemented by using the, bombardment .of accelerated Ar ions during the thermal evaporation coating process of silver films. Experiments were performed in dry conditions using a ball-on-disk test rig at a load range of 19.6 mN - 17.64 N and a sliding velocity of 20 mm/sec. Results showed that the life of functionally gradient silver coating was enhanced about 100 times more than that of thermally evaporated silver coating and 2 times more than that of IBAD silver coating. The functionally gradient. film also showed low friction and wear compared to those of the evaporated silver and

  • PDF

Electrical Properties and Self-poling Mechanism of CNT/PVDF Piezoelectric Composite Films Prepared by Spray Coating Method

  • Lee, Sunwoo;Jung, Nak-Chun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.256-256
    • /
    • 2013
  • Carbon nanotubes (CNT) / polyvinylidene fluoride (PVDF) piezoelectric composite films for nanogenerator devices were fabricated by spray coating method. When the CNT/PVDF mixture solution passes through the spray nozzle with small diameter by the compressed nitrogen gas, electric charges are generated in the liquid by a triboelectric effect. Then randomly distributed ${\beta}$ phase PVDF film could be re-oriented by the electric field resulting from the accumulated electrical charges, and might be resulted in extremely one-directionally aligned ${\beta}$ phase PVDF film without additional electric field for poling. X-ray diffraction patterns were used to investigate crystal structure of the CNT/PVDF composite films. It was confirmed that they revealed extremely large portion of the ${\beta}$ phase PVDF crystalline in the film. Therefore we could obtain the poled CNT/PVDF piezoelectric composite films by the spray coating method without additional poling process. Charge accumulation and resulting electric field generation mechanism by spray coating method were shown in Fig. 1. The capacitance of the CNT/PVDF films increased by adding CNTs into the PVDF matrix, and finally saturated. However, the I-V curves didn't show any saturation effect in the CNT concentration range of 0~4 wt%. Therefore we can control the performance of the devices fabricated from the CNT/PVDF composite film by adjusting the current level resulted from the CNT concentration with the uniform capacitance value.

  • PDF

Preparation of Water-Repellent Coating Solutions from Tetraethoxysilane and Methyltriethoxysilane by Sol-Gel Method (졸-겔법에 의해 Tetraethoxysilane과 Methyltrimethoxysilane으로부터 발수코팅제 제조)

  • Kim, Dong Gu;Lee, Byung Wha;Song, Ki Chang
    • Korean Chemical Engineering Research
    • /
    • v.56 no.3
    • /
    • pp.327-334
    • /
    • 2018
  • Water-repellent coating solutions were prepared by sol-gel method using tetraethoxysilane (TEOS) and methyltrimethoxysilane (MTMS) as precursors. The solutions were spin-coated on a cold-rolled steel sheet and thermally cured to prepare a non-fluorine water-repellent coating films. The effects of molar ratios of MTMS/TEOS, water concentration and ammonia concentration on the hydrophobic properties of the coating films were studied. The contact angle of water on coating films prepared by varying the molar ratio of MTMS/TEOS to 1~20 showed a maximum value of $108^{\circ}$ when the MTMS/TEOS molar ratio was 10. With increasing water content, the coating films showed the larger contact angles and the better the water repellency. As the amount of ammonia added was increased, the contact angles of coating films were increased, showing the better the water repellency. It is considered that the larger the amount of ammonia added, the larger the size of the silica particles generated, which increases the surface roughness of the silica particles, thereby increasing the water repellency.