Browse > Article
http://dx.doi.org/10.46670/JSST.2021.30.6.451

NH3 sensing properties of porous CuBr films prepared by spin-coating  

Kim, Sang-Kwon (Department of Electronic and Information Materials Engineering, Jeonbuk National Unversity)
Yu, Byeong-Hun (Department of Electronic and Information Materials Engineering, Jeonbuk National Unversity)
Yoon, Ji-Wook (Department of Electronic and Information Materials Engineering, Jeonbuk National Unversity)
Publication Information
Journal of Sensor Science and Technology / v.30, no.6, 2021 , pp. 451-455 More about this Journal
Abstract
Porous copper bromide (CuBr) films are highly advantageous for detecting ammonia (NH3). The fabrication of porous CuBr films requires complex high-temperature processes or multistep processes. Herein, we report the uncomplicated preparation of porous CuBr films by a spin-coating method and the films' excellent NH3 sensing properties. The porous films were prepared by spin-coating 100, 150, and 200 mM CuBr solutions, and then dried in a vacuum oven for 2 h. All the films showed a high NH3 response; in particular, the film prepared using a 100 mM CuBr solution showed an extremely high response (resistance ratio = 852) to 5 ppm NH3. The film also showed fast response and recovery times, 272 s and 10 s respectively, even at room temperature. The outstanding NH3 sensing characteristics were explained in relation to the porosity and thickness of the prepared films. The high-performance NH3 sensors used in this study can be used for both indoor air quality and environmental monitoring applications.
Keywords
CuBr film; Porosity; Spin coating; $NH_3$ sensor; Room-temperature operation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 D. M. Nerkar, S. V. Panse, S. P. Patil, and S. E. Jaware, "Development of room temperature operating NH3 gas sensor based on free standing PPy-PVA composite films", Int. J. Sci. Res., Vol. 5, No. 6, pp. 2582-2588, 2016.
2 L. Ampollini, E. F. Katz, S. Bourne, Y. Tian, A. Novoselac, A. H. Goldstein, G. Lucic, M. S. Waring, and P. F. DeCarlo, "Observations and contributions of real-time indoor ammonia concentrations during HOMEChem", Environ. Sci. Technol., Vol. 53, No. 15, pp. 8591-8598, 2019.   DOI
3 C. Castillo, G. Cabello, B. Chornik, Y. Huentupil, and G. E. Buono-Core, "Characterization of photochemically grown Pd loaded WO3 thin films and its evaluation as ammonia gas sensor", J. Alloys Compd., Vol. 825, pp. 154166(1)-154166(7), 2020.
4 R. Ghosh, A. Midya, S. Santra, S. K. Ray, and P. K. Guha, "Chemically reduced graphene oxide for ammonia detection at room temperature", ACS Appl. Mater. Interfaces, Vol. 5, No. 15, pp. 7599-7603, 2013.   DOI
5 T. Poyet, P. Knauth, and P. L. Llewellyn, "Sorption of ammonia gas on the solid ion conductor Cu(I)Br", Phys. Chem. Chem. Phys., Vol. 4, pp. 802-805, 2002.   DOI
6 H. Y. Li, C. S. Lee, D. H. Kim, and J. H. Lee, "Flexible room-temperature NH3 sensor for ultrasensitive, selective, and humidity-independent gas detection", ACS Appl. Mater. Interfaces, Vol. 10, pp. 27858-27867, 2018.   DOI
7 D. Kwak, Y. Lei, and R. Maric, "Ammonia gas sensor: A comprehensive review", Talanta, Vol. 204, pp. 713-730, 2019.   DOI
8 D. Wu, Q. Peng, S. Wu, G. Wang, L. Deng, H. Tai, L. Wang, Y. Yang, L. Dong, Y. Zhao, J. Zhao, D. Sun, and L. Lin, "A simple graphene NH3 gas sensor via laser direct writing", Sensors, Vol. 18, No. 12, pp. 4405(1)-4405(10), 2018.   DOI
9 U. S., Agency for Toxic Substances and Disease Registry, Toxicological profile for ammonia, Atlanta, 2004.
10 D. S. Gavaskar, P. Nagaraju, Y. Vijayakumar, P. S. Reddy, and M. V. R. Reddy, "Low-cost ultra-sensitive SnO2-based ammonia sensor synthesized by hydrothermal method", J. Asian Ceram. Soc., Vol. 8, No. 3, pp. 605-614, 2020.   DOI
11 P. Guo and H. Pan, "Selectivity of Ti-doped In2O3 ceramics as an ammonia sensor", Sens. Actuators B-Chem., Vol. 114, pp. 762-767, 2006.   DOI
12 H. J. Kharat, K. P. Kakde, P. A. Savale, K. Datta, P. Ghosh, and M. D. Shirsat, "Synthesis of polypyrrole films for the development of ammonia sensor", Polym. Adv. Technol., Vol. 18, pp. 397-402, 2007.   DOI
13 J. W. Han, B. Kim, J. Li, and M. Meyyappan, "A carbon nanotube based ammonia sensor on cellulose paper", RSC Adv., Vol. 4, pp. 549-553, 2014.   DOI
14 Z. Guo, N. Liao, M. Zhang, and W. Xue, "Theoretical approach to evaluate graphene/PANI composite as highly selective ammonia sensor", Appl. Surf. Sci., Vol. 453, pp. 336-340, 2018.   DOI
15 A. T. Guntner, M. Wied, N. J. Pineau, and S. E. Pratsinis, "Rapid and selective NH3 sensing by porous CuBr", Adv. Sci., Vol. 7, pp. 1903390(1)-1903390(7), 2020.   DOI
16 M. Bendahan, P. Lauque, C. Lambert-Mauriat, H. Carchano, and J. L. Seguin, "Sputtered thin films of CuBr for ammonia microsensors: morphology, composition and ageing", Sens. Actuators B-Chem., Vol. 84, pp. 6-11, 2002.   DOI
17 L. Kumar, I. Rawal, A. Kaur, and S. Annapoorni, "Flexible room temperature ammonia sensor based on polyaniline", Sens. Actuators B-Chem., Vol. 240, pp. 408-416, 2017.   DOI
18 H. Zhu, A. Liu, and Y. Y. Noh, "Transparent inorganic copper bromide(CuBr) p-channel transistors synthesized from solution at room temperature", IEEE Electron Device Lett., Vol. 40, No. 5, pp. 769-772, 2019.   DOI