• Title/Summary/Keyword: Coated seed

Search Result 115, Processing Time 0.022 seconds

Relationship between Seed Vigour and Electrolyte Leakage in Rice Seeds with Different Grain-filling Period

  • Kim, Jin-Ho;Lee, Sheong-Chun;Song, Dong-Seog
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.43 no.3
    • /
    • pp.147-151
    • /
    • 1998
  • The conductivity test is a measure of electrolytes leakage from plant tissue. The shorter the maturation period after heading was the greater electrical conductivity (EC) of rice seed. The polymer-coated seed was not different in EC compared with non-coated seed. As soaking time of rice seed increased, EC increased gradually. The EC varied from 9.9 to 20.7$\mu$S $cm^{-1}g^{-l}$ for control plots and from 21.3 to 41.7$\mu$S $cm^{-1}g^{-l}$ for heat-killed seeds which were produced by autoclaving seeds at 121$^{\circ}C$ for 20 minutes. The germination speed (the rate of 5th day) of rice seed was 94% at control plot, 83% at low temperature and 20% at high temperature. Besides, germination percentage was 95% for the control, 92% for the low temperature treatment and 39% for the high temperature treatment. The EC was negatively correlated (r=-0.771$^{**}$) with germination percentage at low temperature. Water uptake in seeds of 30, 40, 50 days after heading (DAH) was greater than that of 20 DAH. Plant height of seedlings was 9.84 cm for the control but 4.32 cm for the high temperature treatment, and the tallest for polymer-coated seed. Dry weight of seedlings was 0.841 g for the control and 0.287 g at high temperature. Besides, the polymer-coated seed was heavier than non-coated seed. The number of roots was largest from 40 to 50 DAH and polymer-coated seed, but was decreased from 20 to 30 DAH. The length of roots was 20.52 cm at control plot and 19.89 cm polymer-coated seed but 8.68 cm for the low temperature treatment and 7.28 cm for the high temperature treatment.

  • PDF

Seed Coating Material and Seed Size Effects on Agronomic Characteristics of Over Sown Pasture Species (피복재료 및 종자의 크기가 겉뿌림 목초의 생육특성에 미치는 영향)

  • 김종관;권찬호;김동암
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.20 no.1
    • /
    • pp.67-76
    • /
    • 2000
  • An experiment was conducted to evaluate the effects of lime, zeolite, and rock phosphate as coating materials and coated seed size on germination, establishment, and early growth of pasture species at the experimental livestock farm, Yonam College of Agriculture in 1997. Germinating energy and germination of coated tall fescue and orchardgrass seeds were lower than those of non-coated seeds. Coated seed of tall fescue with 70% lime and 15% rock phosphate was the best in germination. The germination of small size seed (< ${\varnothing}2$ mm) was better than those of medium (> ${\varnothing}2$ mm and < ${\varnothing}2$ mm) and large size seeds (> ${\varnothing}2$ mm). Germination of coated orchardgrass seed with 55% lime and 30% rock phosphate treatment was higher than that of other coated seeds, and germination of small size seed was higher than those of medium and large size seeds (p<0.05). Germination energy and germination of coated alfalfa and birdsfoot trefoil seeds were lower than those of non-coated seeds. Germination of coated alfalfa seed with 70% lime and 15% rock phosphate, and 45% lime and 55% rock phosphate was higher compared with other coated seeds. Germination of medium size seed was higher than those of small and large size seeds (p<0.05). Among coated birdsfoot trefoil seed, 45% lime and 40% rock phosphate treatment resulted in higher germinating energy and germination than other treatments. There was no significant difference in establishment and early growth of coated tall fescue and orchardgrass seeds. However, tall fescue and orchardgrass coated with 45 % lime and 40% phosphate rock showed higher establishment and early growth. There was also no significant difference in establishment and early growth of coated alfalfa among the treatments. Among coated treatments, establishment and early growth of alfalfa coated with 75% lime and 10% rock phosphate were the highest and showed 46.4% and $72.6\;g/\textrm{m}^2$, respectively. Establishment and early growth of coated birdsfoot trefoil with 55% lime and 30% rock phosphate were the highest among coated birdsfoot trefoil seed (p<0.05) and recorded 46.4% and $44.6\;g/\textrm{m}^2$, respectively. Results of this study indicate that the germination of coated grass and legume seed may be improved by increasing the percentage of rock phosphate and decreasing that of lime. With regard to seed size, the germination of pasture species with small seed size (< ${\varnothing}2$ mm) may be better than medium and large size seeds except alfalfa. Establishment and early growth of grasses can be also improved by increasing the percentage of rock phosphate and decreasing that of lime.

  • PDF

Seed germination and seedling growth as affected by the coating materials of rice seed in the submerged soil (벼 종자의 코팅소재별 발아 및 유묘생육 특성)

  • Park, K.H.;Kang, Y.K.;Oh, D.G.;Kim, Y.S.;Chang, J.T.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.13 no.1
    • /
    • pp.27-33
    • /
    • 2011
  • The study was performed to evaluate rice seed germination, seedling emergence and seedling establishment under different coating materials such as iron powder, silicate powder and silicate coverage after direct seeding. There were differences among coating materials as follows; 1. In seedling establishment there was the highest in untreated control> silicate-coated seeds and silicate coverage>iron-coated seeds. In case of untreated control this result due to laboratory experiment unlike field conditions where has been constraints in bird damages, seed dry under strong sunlight and buoyance after rainy and/or irrigation. 2. Thus, there was the highest in untreated control>silicate-coated seeds>silicate coverage>iron-coated seeds, respectively. 3. Total fresh weight(shoots and roots) of the seedling was also highest in untreated control>silicate-coated seeds and silicate coverage> iron-coated seeds.

Effects of the Loess Coating on Seed Germination and Seedling Growths of the Eelgrass, Zostera marina

  • Park, Jung-Im;Lee, Kun-Seop
    • ALGAE
    • /
    • v.22 no.2
    • /
    • pp.141-146
    • /
    • 2007
  • Seagrass bed is an important component in coastal and estuarine ecosystems, providing food and habitats to a wide variety of marine organisms. Recently, seagrass coverage has declined significantly due to anthropogenic impacts such as cultural eutrophication and reclamation, and thus efforts are under way to prevent further losses and restore disturbed seagrass habitats worldwide. Seagrass transplantation techniques for habitat restoration include vegetative and seed-based methods. Seagrass seeds can be collected easily, and sowing seeds is an economically effective method for large-scale restoration. However, large numbers of seed can be lost by seed predation and physical disturbance in the planting areas. In the present study, Zostera marina seeds were coated with loess to reduce seed loss by predation and sweeping away by the water currents, and germination rates of coated seeds and seedling growth were examined to assess the feasibility of the seed-coating method for large-scale restoration. Germination rate of the coated seeds with loess was significantly higher than that of the uncoated seeds. Additionally, seedling growths were not significantly different between the coated and the uncoated seeds. These results suggest that coating of eelgrass seeds with loess enhances success of seed germintion with no harmful effects on seedling growth. Therefore, the seed coating method using loess may be an effective and applicable seedbased transplanting technique for large-scale restoration.

Seed Germination and Effect of Water Depths on Seedling Establishment of Iron-coated Rice Seeds (벼 철분코팅종자의 발아 특성 및 담수깊이에 따른 초기입모 영향)

  • Kim, Sang-Yeol;Park, Sung-Tae;Seo, Jong-Ho;Hwang, Chung-Dong;Bae, Hyun-Kyung;Oh, Myung-Kyu
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.62 no.1
    • /
    • pp.9-15
    • /
    • 2017
  • Germination characteristics, seedling emergence, and early seedling growth of iron-coated rice seeds, cultivars Daebo and Samdeokbyeo, under different water depths were compared with those of non-coated seeds (control) and the results evaluated to obtain basic information for establishing stable seedlings in direct water seeding. The total germination percentage of the two seed treatments was similar, but iron-coated seeds had slightly faster germination and shorter mean germination time than non-coated seeds. Water absorption rates of iron-coated seeds were lower than that of non-coated seeds during seed germination. The germination percentage of the two iron-coated rice seed cultivars showed a significant decline of 15-22% after one year of storage under natural conditions. The seedling emergence percentage and uniformity of the two rice cultivars were significantly higher in the iron-coated seeds at 1-13 cm water depths but the percentage of floating seedlings was lower in iron-coated seeds than in non-coated seeds. The iron-coated seeds had a high seedling emergence percentage of 91.3-93.3% at all flooding depths whereas the non-coated seeds had a significantly low seedling emergence percentage of 57.7-71.7% at a water depth of 13 cm. Moreover, the shoot dry weight and seedling health score of iron-coated seeds were significantly higher than those of non-coated seeds, while root dry weights were similar in iron-coated and non-coated seeds, regardless of water depth. These results suggest that iron-coated seeds are more appropriate for stable seedling establishment in direct water seeding than are non-coated seeds.

Effects of Polymer Coating on Seed Vigour in Rice (벼 종자의 Polymer 피복처리가 종자세에 미치는 영향)

  • 이성춘;정춘화;김진희;송동석
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.41 no.3
    • /
    • pp.274-285
    • /
    • 1996
  • These experiments were conducted to evaluate the effects of seed coating with ten environmentally acceptable polymers, on germination percentage, water uptake, respiration, emergence and seedling growth characteristics. The water absorption of polymer-coated seeds in saturation condition was highest in klucel and lowest in polyvinyl pyrrolidone(PVP), and that in water was highest in klucel and lowest in maltrin. Respiration rates of polymer-coated seeds in Hwayoungbyeo and Ilpumbyeo were lower than those of none-coated seeds, and those in Daecheongbyeo and Jinmibyeo were higher than that of none-coated seeds, and those of sepiret coated seeds were higher than PVP coated seeds. The germination polimer-coated seed was reduced by one percentage by coating with seed coating machine. Germination percentage was not affected by any of polymer coating in high quality seed, but there were significant effects in low quality seed coating with waterlock, surelease 46 and sepiret significantly reduced germination some cultivars. Germination percentage after accelated ageing treatment were slightly higher most of polymer-coated seeds than in none-coated seeds, but those of sepiret-and klucel-coated seeds were lower significantly. Germination percentage of seeds coated with daran 8600, rnaltrin, sacrust and opadry were enhanced slightly under cold test other polimers reduced germination. The seedling height of polymer-coated seeds were longer than those of none-coated seeds, but those of waterlock, PVP and maltrin coating seeds were shorter, seedling hight was shortened by polimer coating under cold test. Polymer-coated seeds showed higher emergence percentage, shorter emergence time in field condition. The highest emergence percentage and the shortest emergence time was shown at 90% soil moisture content.

  • PDF

Seed Coating Effect on Establishment and Early Growth of Over Sown Pasture Species (종자피복이 겉뿌림 목초의 정착과 초기 생육에 미치는 영향)

  • 김종관;권찬호;한건준;민두홍;김종덕;김동암
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.20 no.1
    • /
    • pp.61-66
    • /
    • 2000
  • An experiment was conducted to evaluate the effects of seed coating on germination and early growth of tall fescue (Festuca arundinacea Schr.), orchardgrass (Dactylis glomerata L.), and alfalfa (Medicago sativa L.) over sown on unploughed hilly and forested areas. Establishment and early growth of coated tall fescue and orchardgrass on unploughed hilly area were not significantly influenced by seed coating. Establishment and early growth of coated alfalfa on unploughed hilly area were higher than non-coated and showed 4.7% and 4.0 g/m2, respectively. Establishment of coated tall fescue (11.8%) on forested area were higher than noncoated (0.3%), but ealy growth of tall fescue was not significantly influences by seed coating. Establishment of over sown orchardgrass on forested area was not significantly affected by seed coating, but early growth of coated seed (18.7%) was better than that of non-coated (0.3%). Establishment of coated alfalfa on forested area were higher than those of non-coated. Results of this study indicate that the establishment and early growth of over sown tall fescue, orchardgrass, and alfalfa could be improved by seed coating.

  • PDF

Improvement of Rice Seedling Emergence by Seed Coating Materials in Direct Seeding into Flooded Paddy Soil (벼 담수토중직파재배시 종자분의 재료에 따른 입모향상 효과)

  • 원종건;최충돈;이외현;이상철;김칠용;최부술
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.42 no.3
    • /
    • pp.286-291
    • /
    • 1997
  • This experiment was carried out to improve seedling emergence and establishment in paddy rice sown into puddled soil. Rice seed were coated with CaO$_2$, KNO$_3$ and acid sulphate soil. When coated seeds with CaO$_2$, KNO$_3$ and acid sulphate soil were sown into puddled soil, soil redox potential was increased and the period of oxidizing was longer in KNO$_3$ than that of any other soils. pH was higher in control than that of coated seeds with CaO$_2$, KNO$_3$ and acid sulphate soil. It seems that the coated seeds oxidize soil locally, thus prohibit soil reduction. Seedling emergence was improved by seed coating materials. Emergence date was 8 days after seeding(DAS) in CaO$_2$, 14 DAS in acid sulphate soil, 21 DAS in KNO$_3$ coated seed and 20 DAS in uncoated seed, respectively. Emergence rate was highest in CaO$_2$ coated seed(80%) followed by acid sulphate soil coated seed(61%), while control(46%) and KNO$_3$(42%) were very poor. This result would be interpreted as the difference in oxidizing power among coating agents ; CaO$_2$ and acid sulphate soil may oxidize weakly and shortly while KNO$_3$ may oxidize soil strongly and persistantly. Our results suggested that local oxidizing around rice seed sown into puddled soil enhanced seedling emergence and also found a possibility to promote seedling emergence with acid soil.

  • PDF

Bit-Rate Analysis of Various Symmetric ESQWs SEED under Optimized Input Power (최적 입사 광 전력 하에서의 대칭 ESQWs SEED의 비트 전송률 특성 분석)

  • Lim, Youn-Sup;Choi, Young-Wan
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.7
    • /
    • pp.66-79
    • /
    • 1999
  • We investigate the effects of high input power on the performance of optical bistable symmetric self-electooptic effect devices (S-SEEDs) using extremely shallow quantum wells (ESQWs). In this study, we consider the four ESQWs SEEDs; anti-reflection (AR)-coated ESQWs S-SEED, back-to-back AR coated ESQWs S-SEED, asymmetric F뮤교-Perot (AFP) ESQWs S-SEED, and back-to-back AFP-ESQWs S-SEED. As the input power increases, device performances such as on/off contrast ratio, on/off reflectivity difference are seriously degraded because of ohmic heating and exciton saturation. On the other hand, switching speed of the device increases up to certain value and then begins to decrease. With reasonable optimization of the input power for the best switching speed operation of the devices in a cascading optical interconnection system, we simulate and analyze the system bit-rate of the various ESQWs S-SEEDs, for a mesa of $5{\times}5{\mu}m^2$ size, changing the namber of quantum wells for the external bias of 0 V and -5V.

  • PDF

Methods of Application and Beneficial Effects of Silicate-Coating Rice Seeds (볍씨의 규산코팅방법에 따른 이용특성과 육묘효과)

  • Kang, Yang-Soon;Kim, Wan Joong;Hwang, Duck Sang;Kim, Hee Kyu
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.65 no.1
    • /
    • pp.30-39
    • /
    • 2020
  • A new silicate coating technology was developed which reduces the impact of dust and loosening during seeding compared to existing silicate-coatings (Seed/Si/Zeolite), and therefore can lower the production costs of rice cultivation. In this method, 100 g of rice seed is coated with 18 mL of liquid silicic acid and then dressed with a mixture containing 80 g of dolomite and 5 g of iron. To determine the most effective method of application and ensure that seedlings developed healthily, a series of experiments were carried out. Infected seeds scattered in seedling boxes and pots (soil and hydroponic) were coated dry, without disinfection. In comparison to the seed which were not treated with the silicate-coating, the new seed (A) were 1.84 times heavier in weight, and were also improved in terms of coating strength and coating color. Compared to the seedlings grown from the non-coated seed, those grown from the new silicate-coated seed were of significantly higher quality (weight/length) and had erect, dark greenish leaves, which are ideal plant characteristics. This was most likely due to increased silicate uptake. The symptoms of bakanae disease in the non-coated seed peaked after 38 days to 54.2%, whereas the control value was 68.8% in the new silicate-coated seed (A). In the infected seedlings grown from the new silicate-coated rice seed, subnormal macro-conidia, namely, a sickle shape spore without a septum; a straight oblong shape spore without a septum and with a thick cell wall; and inter-septal necrosis of a normal spore were detected. It is believed that the strong alkalinity of silicic acid have acted as unfavorable conditions for pathogenicity. In seedlings grown from the new silicate coated rice seed under hydroponic conditions without nutrients, normal root activity and growth was maintained without leaf senescence. Therefore, it was possible to reduce the rate of fertilization. In the future, a new silicate-coated rice seed was required for the study of minimal nutrition for anti-aging of seedlings.