• Title/Summary/Keyword: Coated layer

Search Result 1,801, Processing Time 0.034 seconds

Dispersion Characteristics of α-Fe2O3 Nanopowders Coated with Titanium Dioxide by Atomic Layer Deposition

  • Ok, Hae Ryul;Lee, Bo Kyung;Bae, Hye Jin;Kim, Hyug Jong;Choi, Byung Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.2
    • /
    • pp.137-140
    • /
    • 2017
  • A $TiO_2$ nanofilm was deposited on ${\alpha}-Fe_2O_3$ nanopowders using the atomic layer deposition method. The $TiO_2$ film was prepared at $300^{\circ}C$ using $Ti(N(CH_3)_2)_4$ and $H_2O$ as the precursor and reactant gas, respectively. The thickness and composition of the $TiO_2$ surface were characterized by TEM and EDS measurements. The TEM results showed that the growth rate of the film was about $0.12{\AA}/cycle$. The EDS and SAED analyses showed the presence of titanium oxide on the surface of the ${\alpha}-Fe_2O_3$ nanopowders, confirming the deposition of the $TiO_2$ nanofilm. The Zeta potential and sedimentation test results showed that the dispersibility of the coated nanopowders was higher than that of the uncoated nanopowders. This is attributed to the electrostatic repulsion between the $TiO_2$-coated layers on the surface of the ${\alpha}-Fe_2O_3$ nanopowders. The results revealed that the $TiO_2$-coated layers modified the surface characteristics of the ${\alpha}-Fe_2O_3$ nanopowders and improved their dispersibility.

Fabrication Of Thin Electrolyte Layer For Solid Oxide Fuel Cell by Vacuum Slurry Dip-coating Process (진공 슬러리 담금 코팅 공정에 의한 고체 산화물 연료전지용 박막 전해질막 제조에 관한 연구)

  • Son, Hui-Jeong;Lim, Tak-Hyoung;Lee, Seung-Bok;Shin, Dong-Tyul;Song, Rak-Hyun;Kim, Sung-Hyun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.17 no.2
    • /
    • pp.204-211
    • /
    • 2006
  • The electrolyte in the solid oxide fuel cell must be dense enough to avoid gas leakage and thin enough to reduce the ohmic resistance. In order to manufacture the thin and dense electrolyte layer, 8 mol% $Y_2O_3$ stabilized-$ZrO_2$ (8YSZ) electrolyte layers were coated on the porous tubular substrate by the novel vacuum slurry dip-coating process. The effects of the slurry concentration, presintering temperature, and vacuum pressure on the thickness and the gas permeability of the coated electrolyte layers have been examined in the vacuum slurry coating process. The vacuum-coated electrolyte layers showed very low gas permeabilities and had thin thicknesses. The single cell with the vacuum-coated electrolyte layer indicated a good performance of $495\;mW/cm^2$, 0.7 V at $700^{\circ}C$. The experimental results show that the vacuum dip-coating process is an effective method to fabricate dense thin film on the porous tubular substrate.

Li3PO4 Coated Li[Ni0.75Co0.1Mn0.15]O2 Cathode for All-Solid-State Batteries Based on Sulfide Electrolyte

  • Lee, Joo Young;Park, Yong Joon
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.407-415
    • /
    • 2022
  • Surface coating of cathodes is an essential process for all-solid-state batteries (ASSBs) based on sulfide electrolytes as it efficiently suppresses interfacial reactions between oxide cathodes and sulfide electrolytes. Based on computational calculations, Li3PO4 has been suggested as a promising coating material because of its higher stability with sulfides and its optimal ionic conductivity. However, it has hardly been applied to the coating of ASSBs due to the absence of a suitable coating process, including the selection of source material that is compatible with ASSBs. In this study, polyphosphoric acid (PPA) and (NH4)2HPO4 were used as source materials for preparing a Li3PO4 coating for ASSBs, and the properties of the coating layer and coated cathodes were compared. The Li3PO4 layer fabricated using the (NH4)2HPO4 source was rough and inhomogeneous, which is not suitable for the protection of the cathodes. Moreover, the water-based coating solution with the (NH4)2HPO4 source can deteriorate the electrochemical performance of high-Ni cathodes that are vulnerable to water. In contrast, when an alcohol-based solvent was used, the PPA source enabled the formation of a thin and homogeneous coating layer on the cathode surface. As a consequence, the ASSBs containing the Li3PO4-coated cathode prepared by the PPA source exhibited significantly enhanced discharge and rate capabilities compared to ASSBs containing a pristine cathode or Li3PO4-coated cathode prepared by the (NH4)2HPO4 source.

Planarization of SUS310 Metal Substrate Used for Coated Conductor Substrate by Chemical Solution Coating Method (화학적인 용액 코팅방법에 의한 박막형 고온초전도체에 사용되는 SUS310 금속모재의 평탄화 연구)

  • Lee, J.B.;Lee, H.J.;Kim, B.J.;Kwon, B.K.;Kim, S.J.;Lee, J.S.;Lee, C.Y.;Moon, S.H.;Lee, H.G.;Hong, G.W.
    • Progress in Superconductivity
    • /
    • v.12 no.2
    • /
    • pp.118-123
    • /
    • 2011
  • The properties of $2^{nd}$ generation high temperature superconducting wire, coated conductor strongly depend on the quality of superconducting oxide layer and property of metal substrate is one of the most important factors affecting the quality of coated conductor. Good mechanical and chemical stability at high temperature are required to maintain the initial integrity during the various process steps required to deposit several layers consisting coated conductor. And substrate need to be nonmagnetic to reduce magnetization loss for ac application. Hastelloy and stainless steel are the most suitable alloys for metal substrate. One of the obstacles in using stainless steel as substrate for coated conductor is its difficulties in making smooth surface inevitable for depositing good IBAD layer. Conventional method involves several steps such as electro polishing, deposition of $Al_2O_3$ and $Y_2O_3$ before IBAD process. Chemical solution deposition method can simplify those steps into one step process having uniformity in large area. In this research, we tried to improve the surface roughness of stainless steel(SUS310). The precursor coating solution was synthesized by using yttrium complex. The viscosity of coating solution and heat treatment condition were optimized for smooth surface. A smooth amorphous $Y_2O_3$ thin film suitable for IBAD process was coated on SUS310 tape. The surface roughness was improved from 40nm to 1.8 nm by 4 coatings. The IBAD-MgO layer deposited on prepared substrate showed good in plane alignment(${\Delta}{\phi}$) of $6.2^{\circ}$.

Preparation of Fe2O3 Coated on Mica for Infrared Reflectance Red Pigment and Thermal Property of Its Isolation-Heat Paint (Fe2O3가 코팅된 판상 mica의 적외선 반사용 적색안료 제조 및 차열도료의 열특성)

  • Lee, Hyun Jin;Kim, Dae Sung;Lee, Seung-Ho;Lim, Hyung Mi;Choi, Byung-Ki;Kang, Kwang-Jung;Jeong, Jae Il;Cho, Kum-Sung
    • Korean Journal of Materials Research
    • /
    • v.25 no.2
    • /
    • pp.61-67
    • /
    • 2015
  • $Fe_2O_3$ coated plate mica($Fe_2O_3$/mica) for infrared reflectance red pigment was prepared under hydrothermal treatment. $Fe_2O_3$ was perfectly coated on mica via the difference of surface charge between $Fe_2O_3$ and mica particles at pH 3. $Fe_2O_3$/mica was then calcined at $800^{\circ}C$ to stabilize the coated layer on mica. The infrared(IR) reflectance pigments were characterized by X-ray diffraction, FE-SEM, zeta potential, and a UV-Vis-NIR spectrophotometer. In particular, the CIE color coordinate and IR reflectance properties of $Fe_2O_3$/mica pigments were investigated in relation to the thickness variation of the $Fe_2O_3$ layer coated on mica of various lateral sizes. The isolation-heat red paints containing the pigments were prepared and optimized with a thinner, settling agent, and dispersant. Then, the films were made. The thermal property of isolation-heat on these films was observed through the relationship of the IR reflectance value, which was based on the variation of the $Fe_2O_3$ layer's thickness coated on mica and mica's lateral size as IR reflectance pigment. With an increase in IR reflectance on these films, the thermal property of isolation-heat was effectively enhanced.

Coating Properties of Single and Multi-Layer Graphene Oxide on a Polystyrene Surface (산화그래핀 층수에 따른 폴리스타이렌 표면 코팅 특성)

  • Lee, Jihoon;Park, Jaebum;Park, Danbi;Huh, Jeung Soo;Lim, Jeong Ok
    • Korean Journal of Materials Research
    • /
    • v.31 no.7
    • /
    • pp.420-426
    • /
    • 2021
  • Graphene, a new material with various advantageous properties, has been actively used in various fields in recent years. Applications of graphene oxide are increasing in combination with other materials due to the different properties of graphene oxide, depending on the number of single and multiple layers of graphene. In this study, single-layer graphene oxide and multi-layer graphene oxide are spray coated on polystyrene, and the physicochemical properties of the coated surfaces are characterized using SEM, Raman spectroscopy, AFM, UV-Vis spectrophotometry, and contact angle measurements. In single-layer graphene oxide, particles of 20 ㎛ are observed, whereas a 2D peak is less often observed, and the difference in surface height increases according to the amount of graphene oxide. Adhesion increases with an increase in graphene oxide up to 0.375 mg, but decreases at 0.75 mg. In multi-layer graphene oxide, particles of 5 ㎛ are observed, as well as a 2D peak. According to the amount of graphene oxide, the height difference of the surface increases and the adhesive strength decreases. Both materials are hydrophilic, but single-layer graphene oxide has a hydrophilicity higher than that of multi-layer graphene oxide. We believe that multi-layer graphene oxide and single-layer graphene oxide can be implemented based on the characteristics that make them suitable for application.

THE STUDY ON THE REMOVAL TORQUE OF THE DIAMOND LIKE CARBON COATED TITANIUM ABUTMENT SCREWS (DLC 표면 처리에 따른 임플랜트 지대주 나사의 풀림 현상에 관한 연구)

  • Koak Jai-Young;Heo Seong-Joo;Chang Ik-Tae;Yim Soon-Ho;Lee Jong-Yeop;Lee Kwang-Ryeol
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.41 no.2
    • /
    • pp.128-135
    • /
    • 2003
  • Statement of problem : Implant screw loosening remains a problem in implant prosthodontics. Some abutment screws with treated surfaces were introduced to prevent screw loosening and to increase preload. DLC(Diamond Like Carbon) film has similar properties on hardness, wear resistance, chemical stability, biocompatibility as real diamond materials. Purpose : The purpose of this study was to investigate the effect of lubricant layer on abutment screw and to discriminate more effective method between soft lubricant and hard lubricant to prevent screw loosening. Material and method : In this study, $1{\mu}m$ thickness DLC was used as protective, lubricating layer of titanium screws and 3 times removal torque was measured on the abutment screws to investigate the difference in 10 coated and 10 non-coated abutment screws. Results : The results indicated that the implants with DLC coating group were not more resistant to the applied force in screw loosening. At 32Ncm, the 3 times removal torque in DLC group were $27.75{\pm}2.89,\;25.85{\pm}2.35$ and $26.2{\pm}2.57$. The removal torque in no-coated abutment screws were $27.85{\pm}4.23,\;27.35{\pm}2.81$ and $27.9{\pm}2.31$, respectively. Conclusion : The lubricant layer used in this study was Diamond Like Carbon(DLC) and it have a properties of hard and stable layer. The DLC coating layer was hard enough to prevent distortion of screws in the repeated unscrewing procedure in clinical situation. The reduced friction coefficient in hard DLC layer was not effective to prevent screw loosening.

Preparation of pitch-coated $TiO_2$ and their photocatalytic performance

  • Chen, Ming-Liang;Oh, Won-Chun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.17 no.1
    • /
    • pp.23-29
    • /
    • 2007
  • Pitch-coated anatase $TiO_2$ typed was prepared by $CCl_4$ solvent mixing method with different mixing ratios. Since the carbon layers derived from pitch on the $TiO_2$ particles were porous, the pitch-coated $TiO_2$ sample series showed a good adsorptivity and photo decomposition activity. The BET surface area for the carbon layer in the sample increases to increasing with pitch contents. The SEM results present to the characterization of porous texture on the pitch-coated $TiO_2$ sample and pitch distributions on the surfaces for all the materials used. From XRD data a weak and broad carbon peak of graphene with pristine anatase peaks were observed in the X-ray diffraction patterns for the pitch-coated $TiO_2$. The EDX spectra show the presence of C, O and S with strong Ti peaks. Most of these samples are richer in carbon and major Ti metal than any other elements. Finally, the excellent photocatalytic activity of pitch-coated $TiO_2$ with slope relationship between relative concentration of MB ($c/c_o$) and t could be attributed to the homogeneous coated pitch on the external surface by $CCl_4$ solvent method.

Gold Recovery Using Inherently Conducting Polymer Coated Textiles

  • Tsekouras, George;Ralph, Stephen F.;Price, William E.;Wallace, Gordon G.
    • Fibers and Polymers
    • /
    • v.5 no.1
    • /
    • pp.1-5
    • /
    • 2004
  • The ability of inherently conducting polymer (ICP) coated textiles to recover gold metal from aqueous solutions containing $[AuCl_4]^-$ was investigated. Nylon-lycra, nylon, acrylic, polyester and cotton were coated with a layer of polypyrrole (PPy) doped with 1,5-naphthalenedisulfonic acid (NDSA), 2-anthraquinonesulfonic acid (AQSA) or p-toluenesulfonic acid (pTS). Textiles coated with polyaniline (PAn) doped with chloride were also used. The highest gold capacity was displayed by PPy/NDSA/nylon-lycra, which exhibited a capacity of 115 mgAu/g coated textile, or 9700 mgAu/g polymer. Varying the underlying textile substrate or the ICP coating had a major effect on the gold capacity of the composites. Several ICP coated textiles recovered more than 90 % of the gold initially present in solutions containing 10 ppm $[AuCl_4]^-$ and 0.1 M HCl in less than 1 min. Both PPy/NDSA/nylon-lycra and PAn/Cl/nylon-lycra recovered approximately 60 % of the gold and none of the iron present in a solution containing 1 ppm $[AuCl_4]^-$, 1000 ppm $Fe^{3+}$ and 0.1 M HCl. The spontaneous and sustained recovery of gold metal from aqueous solutions containing $[AuCl_4]^-$ using ICP coated textiles has good prospects as a potential future technology.