• Title/Summary/Keyword: Coastal remote sensing

Search Result 350, Processing Time 0.029 seconds

THE SPECTRAL SHAPE MATCHING METHOD FOR THE ATMOSPHERIC CORRECTION OF LANDSAT IMAGERY IN SAEMANGEUM COASTAL AREA

  • Min Jee-Eun;Ryu Joo-Hyung;Shanmugam P.;Ahn Yu-Hwan;Lee Kyu-Sung
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.671-674
    • /
    • 2005
  • Atmospheric correction over the ocean part is more important than that over the land because the signal from the ocean is very small about one tenth of that reflected from land. In this study, the Spectral Shape Matching Method (SSMM) developed by Ahn and Shanmugam (2004) is evaluated using Landsat imagery acquired over the highly turbid Saemangeum Coastal Area. The result of SSMM is compared with COST model developed by Chavez (1991 and 1997). In principle, SSMM is simple and easy to implement on any satellite imagery, relying on both field and image properties. To assess the potential use of these methods, several field campaigns were conducted in the Saemangeum coastal area corresponding with Landsat-7 satellite's overpass on 29 May 2005. In-situ data collected from the coastal waters of Saemangeum using optical instruments (ASD field spectroradiometer) consists of ChI, Ap, SS, aooM, F(d). In order to perform SSMM, we use the in-situ water-leaving radiance spectra from clear oceanic waters to estimate the the path radiance from total signal recorded at the top of the atmosphere (TOA), due to the reason that the shape of clear water-leaving radiance spectra is nearly stable than turbid water-leaving radiance spectra. The retrieved water-leaving radiance after subtraction of path signal from TOA signal in this way is compared with that estimated by COST model. The result shows that SSMM enabled retrieval of water-leaving radiance spectra that are consistent with in-situ data obtained from Saemangeum coastal waters. The COST model yielded significantly high errors in these areas.

  • PDF

Thematic and geometric analysis of Bangpo beach based on UAV Remote Sensing (무인항공기반 태안반도 방포해빈의 지형분석)

  • Bae, Sungji;Yu, Jaehyung;Jeong, Yong-Sik;Yang, Dongyoon;Han, Min
    • Journal of The Geomorphological Association of Korea
    • /
    • v.23 no.1
    • /
    • pp.117-128
    • /
    • 2016
  • High resolution aerial photographs and digital elevation models for Bangpo beach using UAV were generated in this study to analyze the thematic and geometric characteristics of coastal features. Based on 728 aerial images acquired on September 10, 2016 by the UAV, a image mosaic at 2.2 cm spatial resolution and a digital elevation model at 4.4 cm spatial resolution were developed. This study found out that Bangpo beach consisted of intertidal zone and supratidal zone. The intertidal zone can be subdivided into lower part and upper part with distinctive geomorphological characteristics. While the lower part included sand bars and ripple marks along the coastline, the cusps and sand dunes were the major coastal features of the upper part. Part of the intertidal zone was occupied by shore platform with average slope of 0.9 degree containing various sizes of gravels. The supratidal zone slanted toward ocean with berms on the surface with an interval of 15 m. These coastal features indicated the flow intensity towards to the land and tidal effect. It validated that the UAV application in coastal research was very effective analyzing to examine coastal processes.

Seasonal Variations of Direct Solar Irradiance with Ground and Air Atmospheric Data Fusion for Peninsular Type Coastal Area (지상 및 고도별 대기측정 자료 융합을 이용한 반도형 해안지역의 직달일사량 계절 변화 연구)

  • Choi, Ji Nyeong;Lee, Sanghee;Seong, Sehyun;Ahn, Ki-Beom;Kim, Sug-Whan;Kim, Jinho;Park, Sanghyun;Jang, Sukwon
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.3
    • /
    • pp.411-423
    • /
    • 2020
  • Localized solar irradiance is normally derived from atmospheric transmission influenced by atmospheric composition and conditions of the target area. Specially, for the area with complex coastal lines such as Taean gun, the accurate estimation of solar irradiance requires for in depth analysis of atmospheric transmission characteristics based on the localized vertical profiles of the key atmospheric parameters. Using MODTRAN (MODerate resolution atmospheric TRANsmission) 6, we report a computational study on clear day atmospheric transmission and direct solar irradiance estimation of Taean gun using the data collected from 3 ground stations and radiosonde measurement over 93 clear days in 2018. The MODTRAN estimated direct solar irradiance is compared with the measurement. The results show that the normalized residual mean (NRM) is 0.28 for the temperature based MODTRAN atmospheric model and 0.32 for the pressure based MODTRAN atmospheric model. These values are larger than 0.1~0.2 of the other study and we understand that such difference represents the local atmospheric characteristics of Taean gun. The results also show that NRM tends to increase noticeably in summer as the temperature increases. Such findings from this study can be very useful for estimation and prediction of the atmospheric condition of the local area with complex coastal lines.

APPLICATION OF HF COASTAL OCEAN RADAR TO TSUNAMI OBSERVATIONS

  • Heron, Mal;Prytz, Arnstein;Heron, Scott;Helzel, Thomas;Schlick, Thomas;Greenslade, Diana;Schulz, Eric
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.34-37
    • /
    • 2006
  • When tsunami waves propagate across open ocean they are steered by Coriolis force and refraction due to gentle gradients in the bathymetry on scales longer than the wavelength. When the wave encounters steep gradients at the edges of continental shelves and at the coast, the wave becomes non-linear and conservation of momentum produces squirts of surface current at the head of submerged canyons and in coastal bays. HF coastal ocean radar is well-conditioned to observe the current bursts at the edge of the continental shelf and give a warning of 40 minutes to 2 hours when the shelf is 50-200km wide. The period of tsunami waves is invariant over changes in bathymetry and is in the range 2-30 minutes. Wavelengths for tsunamis (in 500-3000 m depth) are in the range 8.5 to over 200 km and on a shelf where the depth is about 50 m (as in the Great Barrier Reef) the wavelengths are in the range 2.5 - 30 km. It is shown that the phased array HF ocean surface radar being deployed in the Great Barrier Reef (GBR) and operating in a routine way for mapping surface currents, can resolve surface current squirts from tsunamis in the wave period range 20-30 minutes and in the wavelength range greater than about 6 km. There is a trade-off between resolution of surface current speed and time resolution. If the radar is actively managed with automatic intervention during a tsunami alert period (triggered from the global seismic network) then it is estimated that the time resolution of the GBR radar may be reduced to about 2 minutes, which corresponds to a capability to detect tsunamis at the shelf edge in the period range 5-30 minutes. It is estimated that the lower limit of squirt velocity detection at the shelf edge would correspond to a tsunami with water elevation of less than 5 cm in the open ocean. This means that the GBR HF radar is well-conditioned for use as a monitor of small and medium scale tsunamis, and has the potential to contribute to the understanding of tsunami genesis research.

  • PDF

THE ROLE OF SATELLITE REMOTE SENSING TO DETECT AND ASSESS THE DAMAGE OF TSUNAMI DISASTER

  • Siripong, Absornsuda
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.827-830
    • /
    • 2006
  • The tsunami from the megathrust earthquake magnitude 9.3 on 26 December 2004 is the largest tsunami the world has known in over forty years. This tsunami destructively attacked 13 countries around Indian Ocean with at least 230,000 fatalities, displaced people 2,089,883 and 1.5 million people who lost their livelihoods. The ratio of women and children killed to men is 3 to 1. The total damage costs US$ 10.73 billion and rebuilding costs US$ 10.375 billion. The tsunami's death toll could have been drastically reduced, if the warning was disseminated quickly and effectively to the coastal dwellers along the Indian Ocean rim. With a warning system in Indian Ocean similar to that operating in the Pacific Ocean since 1965, it would have been possible to warn, evacuate and save countless lives. The best tribute we can pay to all who perished or suffered in this disaster is to heed its powerful lessons. UNESCO/IOC have put their tremendous effort on better disaster preparedness, functional early warning systems and realistic arrangements to cope with tsunami disaster. They organized ICG/IOTWS (Indian Ocean Tsunami Warning System) and the third of this meeting is held in Bali, Indonesia during $31^{st}$ July to $4^{th}$ August 2006. A US$ 53 million interim warning system using tidal gauges and undersea sensors is nearing completion in the Indian Ocean with the assistance from IOC. The tsunami warning depends strictly on an early detection of a tsunami (wave) perturbation in the ocean itself. It does not and cannot depend on seismological information alone. In the case of 26 December 2004 tsunami when the NOAA/PMEL DART (Deep-ocean Assessment and Reporting of Tsunami) system has not been deployed, the initialized input of sea surface perturbation for the MOST (Method Of Splitting Tsunami) model was from the tsunamigenic-earthquake source model. It is the first time that the satellite altimeters can detect the signal of tsunami wave in the Bay of Bengal and was used to validate the output from the MOST model in the deep ocean. In the case of Thailand, the inundation part of the MOST model was run from Sumatra 2004 for inundation mapping purposes. The medium and high resolution satellite data were used to assess the degree of the damage from Indian Ocean tsunami of 2004 with NDVI classification at 6 provinces on the Andaman seacoast of Thailand. With the tide-gauge station data, run-up surveys, bathymetry and coastal topography data and land-use classification from satellite imageries, we can use these information for coastal zone management on evacuation plan and construction code.

  • PDF

A study on red tide surveillance system around the Korean coastal waters using GOCI (GOCI를 활용한 한반도 주변해역 적조 감시 체계 연구)

  • Shin, Jisun;Min, Jee-Eun;Ryu, Joo-Hyung
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.2
    • /
    • pp.213-230
    • /
    • 2017
  • The satellite-based red tide detection algorithms have been developed for specific occurrence waters and red tide species. However, it is essential to study the whole occurrence waters and various red tide species for quick and accurate surveillance of red tide around the Korean coastal waters. In thisstudy, the comprehensive analysesinvolve the spectral features of red tide areas and the suitability of the satellite-based red tide detection algorithms used with GOCI in the Korean coastal waters. As a result, the spectral characteristics were changed according to the chlorophyll content of red tide species and the turbidity of the waters where the red tide appeared. In addition, the previous red tide detection algorithm is applied to GOCI, and it is found that there is a limitation to the red tide area extraction as the existing threshold value. To overcome these limitations, red tide species were divided into two groups according to the difference of chlorophyll content and a system for red tide surveillance wassuggested. It is possible to distinguish between red tide and non-red tide area through five steps. As a result of applying to GOCI, the red tide was appropriately extracted from the previous algorithm based on red tide breaking news. If such a red tide surveillance system is used, it will be possible to efficiently monitor red tide by quick and accurate surveillance of the whole occurrence waters around the Korean and various red tide species.

Analysis of Abnormal Sea Surface Temperature in the Coastal Waters of the Yellow Sea Using Satellite Data for the Winter Season of 2004 (인공위성자료를 이용한 2004년 겨울철 황해 연안 해역 이상 수온 해석)

  • Moon, Jeong-Eon;Yang, Chan-Su
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.1
    • /
    • pp.1-10
    • /
    • 2009
  • We studied on the relationship between oceanic variation in the offshore and abnormal sea surface temperature rise in the coastal area of the Yellow Sea using a variety of satellite and in-situ data during winter 2004. In results of the satellite data, the average value of sea surface temperature in the Yellow Sea for 2003 was $10^{\circ}C$, and the average value of sea surface temperature for 2004 was $13^{\circ}C$. It was higher than those of the last year about $3^{\circ}C$. In results of the in-situ data, the average value of surface layer temperature in the Yellow Sea for 2003 was $9.85^{\circ}C$, and the average value of surface layer temperature for 2004 was $12.17^{\circ}C$. In the same satellite data, it was higher than those of the last year about $3^{\circ}C$. In results of the T-S diagram, we divided definitely into water mass of the Yellow Sea and the East China Sea in 2003. But we didn't divide definitely into water mass of the Yellow Sea and the East China Sea in 2004. The average values of air temperature and wind speed for 2003 were $5.23^{\circ}C$ and 4.81 m/s, respectively. And, the average values of air temperature and wind speed for 2004 were $5.61^{\circ}C$ and 4.52 m/s, respectively. So, These were similar. But the wind directions for 2003 were superior northwestern wind, and the wind directions for 2004 were various northern wind. The wind directions were different from each other. Therefore, the abnormal sea surface temperature rise in the coastal area of the Yellow Sea during winter 2004 were better related to oceanic variation in the offshore than influences of atmosphere. In the future, We will do in-depth study for these.

Comparative Analysis of Blue Carbon Stock Spatial Data in the Estuaries and Coastal Areas of the Geum and Nakdong Rivers (금강 및 낙동강 하구·연안의 블루카본 저장량 공간정보 비교)

  • Ji-Ae Jung;Bong-Oh Kwon;Hyun-Jung Hong;Jong-Ho Ahn;Moung-Jin Lee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1505-1515
    • /
    • 2023
  • As extreme weather events caused by climate change are occurring around the world, blue carbon has recently been gaining attention as a carbon sink. Blue carbon has been officially recognized by the Intergovernmental Panel on Climate Change (IPCC) as a means of reducing greenhouse gases, and various studies are underway to discover new blue carbon sources both domestically and internationally. Domestic blue carbon research is centered on carbon absorption and storage in tidal flats, which account for most of the coastal wetlands, but there is a lack of research on spatial information. This study utilized the carbon storage of tidal flats from previous studies and converted it into location and spatial information for each basin of the Geumgang and Nakdong rivers. In addition, a proxy value of carbon storage per area by basin was calculated to compare and analyze the total carbon storage of various tidal flats in Korea and abroad. As a result of the analysis, both the Geumgang and Nakdong River basins showed different amounts of carbon storage depending on the tidal flats data, with the highest amount in the Geumgang basin coming from the National Ocean Survey (469,810.1 Mg C) and the highest amount in the Nakdong River basin coming from the Ministry of Environment (217,145.01 Mg C). The results of this study can be used as a basis for future research on the establishment of domestic blue carbon spatial information.

Analysis of Tidal Channel Variations Using High Spatial Resolution Multispectral Satellite Image in Sihwa Reclaimed Land, South Korea (고해상도 다분광 인공위성영상자료 기반 시화 간척지 갯골 변화 양상 분석)

  • Jeong, Yongsik;Lee, Kwang-Jae;Chae, Tae-Byeong;Yu, Jaehyung
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_2
    • /
    • pp.1605-1613
    • /
    • 2020
  • The tidal channel is a coastal sedimentary terrain that plays the most important role in the formation and development of tidal flats, and is considered a very important index for understanding and distribution of tidal flat sedimentation/erosion terrain. The purpose of this study is to understand the changes in tidal channels by a period after the opening of the floodgate of the seawall in the reclaimed land of Sihwa Lake using KOMPSAT high-resolution multispectral satellite image data and to evaluate the applicability and efficiency of high-resolution satellite images. KOMPSAT 2 and 3 images were used for extraction of the tidal channels' lineaments in 2009, 2014, and 2019 and were applied to supervised classification method based on Principal Component Analysis (PCA), Artificial Neural Net (ANN), Matched Filtering (MF), and Spectral Angle Mapper (SAM) and band ratio techniques using Normalized Difference Water Index (NDWI) and MF/SAM. For verification, a numerical map of the National Geographic Information Service and Landsat 7 ETM+ image data were utilized. As a result, KOMPSAT data showed great agreement with the verification data compared to the Landsat 7 images for detecting a direction and distribution pattern of the tidal channels. However, it has been confirmed that there will be limitations in identifying the distribution of tidal channels' density and providing meaningful information related to the development of the sedimentary process. This research is expected to present the possibility of utilizing KOMPSAT image-based high-resolution remote exploration as a way of responding to domestic intertidal environmental issues, and to be used as basic research for providing multi-platform-image-based convergent thematic maps and topics.

Performance Evaluation of Monitoring System for Sargassum horneri Using GOCI-II: Focusing on the Results of Removing False Detection in the Yellow Sea and East China Sea (GOCI-II 기반 괭생이모자반 모니터링 시스템 성능 평가: 황해 및 동중국해 해역 오탐지 제거 결과를 중심으로)

  • Han-bit Lee;Ju-Eun Kim;Moon-Seon Kim;Dong-Su Kim;Seung-Hwan Min;Tae-Ho Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_2
    • /
    • pp.1615-1633
    • /
    • 2023
  • Sargassum horneri is one of the floating algae in the sea, which breeds in large quantities in the Yellow Sea and East China Sea and then flows into the coast of Republic of Korea, causing various problems such as destroying the environment and damaging fish farms. In order to effectively prevent damage and preserve the coastal environment, the development of Sargassum horneri detection algorithms using satellite-based remote sensing technology has been actively developed. However, incorrect detection information causes an increase in the moving distance of ships collecting Sargassum horneri and confusion in the response of related local governments or institutions,so it is very important to minimize false detections when producing Sargassum horneri spatial information. This study applied technology to automatically remove false detection results using the GOCI-II-based Sargassum horneri detection algorithm of the National Ocean Satellite Center (NOSC) of the Korea Hydrographic and Oceanography Agency (KHOA). Based on the results of analyzing the causes of major false detection results, it includes a process of removing linear and sporadic false detections and green algae that occurs in large quantities along the coast of China in spring and summer by considering them as false detections. The technology to automatically remove false detection was applied to the dates when Sargassum horneri occurred from February 24 to June 25, 2022. Visual assessment results were generated using mid-resolution satellite images, qualitative and quantitative evaluations were performed. Linear false detection results were completely removed, and most of the sporadic and green algae false detection results that affected the distribution were removed. Even after the automatic false detection removal process, it was possible to confirm the distribution area of Sargassum horneri compared to the visual assessment results, and the accuracy and precision calculated using the binary classification model averaged 97.73% and 95.4%, respectively. Recall value was very low at 29.03%, which is presumed to be due to the effect of Sargassum horneri movement due to the observation time discrepancy between GOCI-II and mid-resolution satellite images, differences in spatial resolution, location deviation by orthocorrection, and cloud masking. The results of this study's removal of false detections of Sargassum horneri can determine the spatial distribution status in near real-time, but there are limitations in accurately estimating biomass. Therefore, continuous research on upgrading the Sargassum horneri monitoring system must be conducted to use it as data for establishing future Sargassum horneri response plans.