• Title/Summary/Keyword: Coastal marshes

Search Result 31, Processing Time 0.024 seconds

Studies on the Characteristics of Vegetation and Plant Diversity of Coastal Sand Dune in Busan Metropolitan City (부산광역시 해안사구의 식물다양성과 식생 특성)

  • Park, Ji-Won;Lee, Seung-Yeon;Lee, Eung-Pill;Kim, Eui-Joo;Park, Jae-Hoon;Lee, Jung-Min;Kim, Min-Joo;No, Jae-Yeong;Han, Dong-Uk;You, Young-Han
    • Journal of Wetlands Research
    • /
    • v.22 no.2
    • /
    • pp.66-72
    • /
    • 2020
  • The coastal sand dunes have transitional characteristics of marine and inland ecosystems, and they have abundant biodiversity. This study investigated flora and vegetation and analyzed the landscape structure at seven beaches in Busan metropolitan city. As a result, the vascular species of the coastal sand dunes in Busan were identified as 178 taxa of 140 families. Vegetation landscape was damaged to the extent that no natural vegetation was found in 4 of 7 beaches (57%). The coastal dune vegetation was dominated by the Carex pumila community and Carex kobomugi community. The halophyte and invasive alien species were classified into 18 taxa (10% of all species) and 40 taxa (22% of all), respectively. The vegetation that made up the largest area was the Phragmites communis community of the salt marsh, and the species number of halophyte increased as the wetland area increased. This means that the maintenance and management of salt marshes is important to conserve the unique plant diversity of the region.

Nitrogen and Phosphorus Dynamics in an Salt Marsh in the Nakdong River Estuary (낙동강 하구 염습지 식물군락의 질소 및 인의 동태)

  • Kim Joon-Ho;Hyeong-Tae Mun;Byeong;Kyung-Je Cho
    • The Korean Journal of Ecology
    • /
    • v.12 no.1
    • /
    • pp.1-7
    • /
    • 1989
  • We studied primary production, nitrogen and phosphorus dynamics in a salt marsh of Okryutung at Nakdong River estuary. The standing biomass in Phragmites longivalvis, Carex scabrifolia and Zoysia sinica stand was $5.48kg/\textrm{m}^2,{\;}1.94kg/\textrm{m}^2{\;}and{\;}1.95kg/\textrm{m}^2$, respectively. The peak above-ground biomass in each stand was $1.99kg/\textrm{m}^2,{\;}0.74kg/\textrm{m}^2{\;}and{\;}1.03kg/\textrm{m}^2$, respectively. Soil nitrogen decreased from the onset of growing seson till July, and then increased. Seasonal patterns of soil phosphorus were different from stand to stand. Nitrogen concentrations of above-ground plant tissus were quite different among the plant species at the very beginning of the growing season, however, they became similar as the plants grow. Seasonal pattern of phosphrous in C. scabrifolia roots was quite different from those other two species. Nitrogen absorbed by plants during season in P. longivalvis, C. scabrifolia and Z. sinicia stand was 224kg/ha, 111kg/ha, 156kg/ha, respectively. Phosphorus taken up by plants was 22kg/ha, 29kg/ha and 21kg/ha, respectively. Because the vascular plants growing at salt marshes can immobilize large quantities of nitrogen and phosphorus, salt marsh vegetation can be sued for preventing the pollution of coastal sea water.

  • PDF

Tidal-Flat Reclamations and Irrigation Systems of the Kyodong Island (강화 교동도의 해안저습지 개간과 수리사업)

  • 최영준;홍금수
    • Journal of the Korean Geographical Society
    • /
    • v.38 no.4
    • /
    • pp.535-561
    • /
    • 2003
  • The Kyodong Island on the Yellow Sea has experienced dramatic transformations in the process of massive reclamations of tidal flats. Consisting originally of detached several islets, Kyodong became an integrated island country with the establishment of sea dikes across the salt marshes. The coastal plaines passed through four distinct stages of development. During the nascent period from the Early States to the Koryo Dynasty, strategic considerations led up to the establishment of causeways and garrison farms as well as private land plots. The relocation of regional headquarters of the navy into the island made the reclamation of tidal flats a systematic project during the period of Chosun Korea. The implantation of a large-scale estate by Japanese capitalists was the most characteristic feature of this region's geography during the colonial period. Present-day Kyodong displays various agrarian landscapes of standardized land plots, reinforced sea dikes, and automated agricultural machinery. Throughout the periods irrigation systems have sustained the panoramic transformation of the agricultural geographies of the Kyodong Island. The local people afflicted by a chronic deficiency of water came up with ingenuous irrigation systems such as springs, paddy reservoirs, reservoirs, tanks, artesian wells, and pump stations.

Modeling the long-term vegetation dynamics of a backbarrier salt marsh in the Danish Wadden Sea

  • Daehyun Kim
    • Journal of Ecology and Environment
    • /
    • v.47 no.2
    • /
    • pp.49-62
    • /
    • 2023
  • Background: Over the past three decades, gradual eustatic sea-level rise has been considered a primary exogenous factor in the increased frequency of flooding and biological changes in several salt marshes. Under this paradigm, the potential importance of short-term events, such as ocean storminess, in coastal hydrology and ecology is underrepresented in the literature. In this study, a simulation was developed to evaluate the influence of wind waves driven by atmospheric oscillations on sedimentary and vegetation dynamics at the Skallingen salt marsh in southwestern Denmark. The model was built based on long-term data of mean sea level, sediment accretion, and plant species composition collected at the Skallingen salt marsh from 1933-2006. In the model, the submergence frequency (number yr-1) was estimated as a combined function of wind-driven high water level (HWL) events (> 80 cm Danish Ordnance Datum) affected by the North Atlantic Oscillation (NAO) and changes in surface elevation (cm yr-1). Vegetation dynamics were represented as transitions between successional stages controlled by flooding effects. Two types of simulations were performed: (1) baseline modeling, which assumed no effect of wind-driven sea-level change, and (2) experimental modeling, which considered both normal tidal activity and wind-driven sea-level change. Results: Experimental modeling successfully represented the patterns of vegetation change observed in the field. It realistically simulated a retarded or retrogressive successional state dominated by early- to mid-successional species, despite a continuous increase in surface elevation at Skallingen. This situation is believed to be caused by an increase in extreme HWL events that cannot occur without meteorological ocean storms. In contrast, baseline modeling showed progressive succession towards the predominance of late-successional species, which was not the then-current state in the marsh. Conclusions: These findings support the hypothesis that variations in the NAO index toward its positive phase have increased storminess and wind tides on the North Sea surface (especially since the 1980s). This led to an increased frequency and duration of submergence and delayed ecological succession. Researchers should therefore employ a multitemporal perspective, recognizing the importance of short-term sea-level changes nested within long-term gradual trends.

Predicting the Potential Habitat and Future Distribution of Brachydiplax chalybea flavovittata Ris, 1911 (Odonata: Libellulidae) (기후변화에 따른 남색이마잠자리 잠재적 서식지 및 미래 분포예측)

  • Soon Jik Kwon;Yung Chul Jun;Hyeok Yeong Kwon;In Chul Hwang;Chang Su Lee;Tae Geun Kim
    • Journal of Wetlands Research
    • /
    • v.25 no.4
    • /
    • pp.335-344
    • /
    • 2023
  • Brachydiplax chalybea flavovittata, a climate-sensitive biological indicator species, was first observed and recorded at Jeju Island in Korea in 2010. Overwintering was recently confirmed in the Yeongsan River area. This study was aimed to predict the potential distribution patterns for the larvae of B. chalybea flavovittata and to understand its ecological characteristics as well as changes of population under global climate change circumstances. Data was collected both from the Global Biodiversity Information Facility (GBIF) and by field surveys from May 2019 to May 2023. We used for the distribution model among downloaded 19 variables from the WorldClim database. MaxEnt model was adopted for the prediction of potential and future distribution for B. chalybea flavovittata. Larval distribution ranged within a region delimited by northern latitude from Jeju-si, Jeju Special Self-Governing Province (33.318096°) to Yeoju-si, Gyeonggi-do (37.366734°) and eastern longitude from Jindo-gun, Jeollanam-do (126.054925°) to Yangsan-si, Gyeongsangnam-do (129.016472°). M type (permanent rivers, streams and creeks) wetlands were the most common habitat based on the Ramsar's wetland classification system, followed by Tp type (permanent freshwater marshes and pools) (45.8%) and F type (estuarine waters) (4.2%). MaxEnt model presented that potential distribution with high inhabiting probability included Ulsan and Daegu Metropolitan City in addition to the currently discovered habitats. Applying to the future scenarios by Intergovernmental Panel on Climate Change (IPCC), it was predicted that the possible distribution area would expand in the 2050s and 2090s, covering the southern and western coastal regions, the southern Daegu metropolitan area and the eastern coastal regions in the near future. This study suggests that B. chalybea flavovittata can be used as an effective indicator species for climate changes with a monitoring of their distribution ranges. Our findings will also help to provide basic information on the conservation and management of co-existing native species.

Estimation of Denitrification in the Ganghwa Tidal Flat by a Pore Water Model (공극수 모델로 추정한 강화도 갯벌의 탈질산화 작용)

  • Na, Tae-Hee;Lee, Tong-Sup
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.10 no.1
    • /
    • pp.56-68
    • /
    • 2005
  • We measured nitrate and other nutrients in sediment pore waters retrieved from three sites at the southern upper-tidal flats of the Ganghwa Island. Denitrification rate is estimated by applying a simple 1-D model to the nitrate profiles. Results from Jangwha and Dongmak sites are $7.8{\sim}9.4{\times}10^{-7}{\mu}mol{\cdot}cm^{-2}{\cdot}sec^{-1}$, and $1.4{\sim}3.6{\times}10^{-7}{\mu}mol{\cdot}cm^{-2}{\cdot}sec^{-1}$, respectively. Rates are comparable to those reported around the world in an order of magnitude. Denitrification was lower in summer. The rates were about 1.5 times higher at site where the surface sediments consist of relatively coarser particles. This implies that particle size would control the reactant supply to the subsurface sediment. One may claim the denitrification as an evidence of the biogeochemical purification function of tidal flat. However, the purification seems not a general attribute of a tidal flat when whole system is scrutinized by a thermodynamic criterion. Currently the term 'tidal flat' is used when describing the diverse coastal wetlands such as salt marshes, sandy tidal flats and muddy tidal flats, which exhibit quite different ecological functions. Thus it is worthy of mentioning that the classification of coastal wetlands on the basis of sedimentological characteristics and biogeochemical functions should facilitate our understanding.

Analysis of blue carbon storage research trends and consideration for definitions of blue carbon: A review (블루카본 저장 연구 동향 분석 및 블루카본의 정의에 대한 고찰: 리뷰)

  • Kyeong-deok Park;Dong-hwan Kang;Won Gi Jo;Jun-Ho Lee;Hoi Soo Jung;Man Deok Seo;Byung-Woo Kim
    • Journal of Wetlands Research
    • /
    • v.26 no.1
    • /
    • pp.82-91
    • /
    • 2024
  • In this study, research cases related to blue carbon storage were collected and analyzed, and various definitions of blue carbon were considered in terms of spatiotemporal scope and scientific aspect. 444 papers were selected as research cases related to blue carbon storage, and analysis of the number of papers published by year/country and keywords was performed. Publication of papers related to blue carbon storage has continued to increase since 2011, and more than 50 papers have been published annually since 2018. The most publications by country were in Australia with more than 100 papers, and the United States and China also published more than 60 papers. Key terms related to "natural environment" and "storage characteristics" were analyzed in the sentences defined in the 23 papers that presented the definition of blue carbon. The natural environments where blue carbon was stored were mostly mangroves, salt marshes, and seagrass beds, and blue carbon repository included sediments and even plants themselves. The existing definition of blue carbon focused on the vegetation environment as the storage environment for blue carbon. However, since blue carbon is stored in the sediments of coastal wetlands, it would be appropriate to define the coastal ecosystem, including non-vegetated mudflats, as the storage environment for blue carbon.

The 2009-based detailed distribution pattern and area of Phragmites communis-dominant and Suaeda japonica-dominant communities on the Suncheon-bay and Beolgyo estuarine wetlands (순천만과 벌교 하구 연안습지의 2009년 기준 갈대 및 칠면초 우세 군집 분포양상과 면적 제시)

  • Hong, Seok Hwi;Chun, Seung Soo;Eom, Jin Ah
    • Journal of Wetlands Research
    • /
    • v.17 no.1
    • /
    • pp.26-37
    • /
    • 2015
  • Halophyte distribution pattern and area in the Suncheon-bay and Beolgyo estuary coastal wetlands were analyzed using KOMPSAT-2 landsat images were taken in 2008 and 2009, and field investigations were fulfilled for confirming the precise boundaries of individual halophyte areas. The salt-marsh vegetation in those areas can be classified mainly into two dominant communities: Suaeda japonica-dominant and Phragmites communis-dominant communities. In order to identify sedimentary characteristics, tidal-flat surface leveling and sedimentary facies analysis had been conducted. The sedimentary facies of marsh area are mostly silty clayey and clay facies with a little seasonal change and its slope is very gentle (0.0007~0.002 in gradient). Phragmites communis and Suaeda japonica communities were distributed in the mud-flat zone between 0.7 m and 1.8 m higher than MSL (mean sea level): zone of 1.1~1.8 m in the former and zone of 0.7~1.3 m in the latter. In the Suncheon-bay estuarine wetland, on the basis of 2009 distribution, Phragmites communis-dominant and Suaeda japonica-dominant communities are about $0.79km^2$ and $0.22km^2$ in distribution area, respectively. On the other hand, Bulgyo estuarine marsh shows that the distribution areas of Phragmites communis-dominant and Suaeda japonica-dominant communities are about $0.31km^2$ and 0.031km2 in distribution area, respectively. Individual 105 and 60 dominant community areas and their distribution patterns can be well defined and indicated in the Suncheon-bay and Bulgyo estuarine marshes, respectively. The distribution pattern and area of hylophyte communities analyzed in this study based on 2008/2009 satellite images would be valuable as a base of future monitoring of salt-marsh related studies in the study area which is the most important salt-marsh research site in Korea.

A Study on the Cultivation Processes and Settlement Developments on the Mangyoung River Valley (만경강유역의 개간과정과 취락형성발달에 관한 연구)

  • NamGoong, Bong
    • Journal of the Korean association of regional geographers
    • /
    • v.3 no.2
    • /
    • pp.37-87
    • /
    • 1997
  • As a results of researches on the cultivation processes and settlement developments on the Mangyoung river valley as a whole could be have four 'Space-Time Continuity' through a [Origin-Destination] theory model. On a initial phases of cultivation, the cultivation process has been begun at mountain slopes and tributory plains in upper part of river-basin from Koryo Dynasty to early Chosun Dynasty. At first, indigenous peasants burned forests on the mountain slopes for making 'dryfield' for a cereal crops. Following population increase more stable food supply is necessary facets of life inducing a change production method into a 'wetfield' in tributory plains matching the population increase. First sedentary agriculture maybe initiated at this mountain slopes and tributory plains on upper part of river basin through a burning cultivation methods. Mountain slopes and tributory plains are become a Origin area in cultivation processes. It expanded from up to down through the valleys with 'a bits of land' fashion in a steady pace like a terraced fields expanded with bit by bit of land to downward. They expanded their land to the middle part of river basin in mid period of Chosun Dynasty with dike construction techniques on the river bank. Lower part of river cultivated with embankment building techniques in 1920s and then naturally expanded to the tidal marshes on the estuaries and river inlets of coastal areas. 'Pioneer fringes' are consolidated at there in modern times. Changes in landscapes are appeared it's own characters with each periods of time. Followings are results of study through the Mangyoung river valley as a whole. (1) Mountain slopes and tributory plains on the upper part of river are cultivated 'dryfields' by indigenous peasants with Burning cultivation methods at first and developed sedentary settlements at the edges of mountain slopes and on the river terrace near the fields. They formed a kind of 'periphery-located cluster type' of settlement. This type of settlement are become a prominant type in upper part of river basin. 'Dryfields' has been changed into a 'wetfields' at the narrow tributory plains by increasing population pressure in later time. These wetfields are supplied water by Weir and Ponds Irrigation System(제언수리방법). Streams on the tributory plains has been attracted wetfields besides of it and formed a [water+land] complex on it. 'Wetfields' are expanded from up to downward with a terraced land pattern(adder like pattern, 붕전) according to the gradient of valley. These periphery located settlements are formed a intimate ecological linkage with several sets of surroundings. Inner villages are expanded to Outer villages according to the expansion of arable lands into downward. (2) Mountain slopes and tributory plains expanded its territory to the alluvial deposited plains on the middle part of river valley with a urgent need of new land by population increase. This part of alluvial plains are cultivated mainly in mid period of Chosun Dynasty. Irrigation methods are changed into a Dike Construction Irrigation method(천방수리방법) for the control of floods. It has a trend to change the subjectives of cultivation from community-oriented one who constructed Bochang along tributories making rice paddies to local government authorities who could be gather large sums of capitals, techniques and labours for the big dike construction affairs. Settlements are advanced in the midst of plains avoiding friction of distances and formed a 'Centrallocated cluster type' of settlements. There occured a hierarchical structures of settlements in ranks and sizes according merits of water supply and transportation convenience at the broad plains. Big towns are developed at there. It strengthened a more prominant [water+land] complex along the canals. Ecological linkages between settlements and surroundings are shaded out into a tiny one in this area. (3) It is very necessary to get a modern technology of flood control at the rivers that have a large volume of water and broad width. The alluvial plains are remained in a wilderness phase until a technical level reached a large artificial levee construction ability that could protect the arable land from flood. Until that time on most of alluvial land at the lower part of river are remained a wilderness of overgrown with reeds in lacks of techniques to build a large-scale artificial levee along the riverbank. Cultivation processes are progressed in a large scale one by Japanese agricultural companies with [River Rennovation Project] of central government in 1920s. Large scale artificial levees are constructed along the riverbank. Subjectives of cultivation are changed from Korean peasants to Japanese agricultural companies and Korean peasants fell down as a tenant in a colonial situation of that time in Korea. They could not have any voices in planning of spatial structure and decreased their role in planning. Newly cultivated lands are reflected company's intensions, objectives and perspectives for achieving their goals for the sake of colonial power. Newly cultivated lands are planned into a regular Rectangular Block settings of rice paddies and implanted a large scale Bureaucratic-oriented Irrigation System on the cultivated plains. Every settlements are located in the midst of rice paddies with a Central located Cluster type of settlements. [water+land] complex along the canal system are more strengthened. Cultivated space has a characters of [I-IT] landscapes. (4) Artificial levees are connected into a coastal emnankment for a reclamation of broad tidal marshes on the estuaries and inlets of rivers in the colonial times. Subjectives of reclamation are enlarged into a big agricultural companies that could be acted a role as a big cultivator. After that time on most of reclamation project of tidal marshes are controlled by these agricultural companies formed by mostly Japanese capitalists. Reclaimed lands on the estuaries and river inlets are under hands of agricultural companies and all the spatial structures are formed by their intensions, objectives and perspectives. They constructed a Unit Farming Area for the sake of companies. Spatial structures are planned in a regular one with broad arable land for the rice production of rectangular blocks, regular canal systems and tank reservoir for the irrigation water supply into reclaimed lands. There developed a 'Central-located linear type' of settlements in midst of reclaimed land. These settlements are settled in a detail program upon this newly reclaimed land at once with a master plan and they have planned patterns in their distribution, building materials, location, and form. Ecological linkage between Newly settled settlemrnts and its surroundings are lost its colours and became a more artificial one by human-centred environment. [I-IT] landscapes are become more prominant. This region is a destination area of [Origin-Destination] theory model and formed a 'Pioneer Fringe'. It is a kind of pioneer front that could advance or retreat discontinously by physical conditions and socio-cultural conditions of that region.

  • PDF

Blue Carbon Resources in the East Sea of Korea and Their Values and Potential Applications (동해안 블루카본 자원의 가치와 활용방안)

  • Yoon, Ho-Sung;Do, Jeong-Mi;Jeon, Byung Hee;Yeo, Hee-Tae;Jang, Hyeong Seok;Yang, Hee Wook;Suh, Ho Seong;Hong, Ji Won
    • Journal of Life Science
    • /
    • v.32 no.7
    • /
    • pp.578-587
    • /
    • 2022
  • Korea, as the world's 7th largest emitter of greenhouse gases, has raised the national greenhouse gas reduction target as international regulations have been strengthened. As it is possible to utilize coastal and marine ecosystems as important nature-based solutions (NbS) for implementing climate change mitigation or adaptation plans, the blue carbon ecosystem is now receiving attention. Blue carbon refers to carbon that is deposited and stored for a long period after carbon dioxide (CO2) is absorbed as biomass by coastal ecosystems or oceanic ecosystems through photosynthesis. Currently, there are only three blue carbon ecosystems officially recognized by the Intergovernmental Panel on Climate Change (IPCC): mangroves, salt marshes, and seagrasses. However, the results of new research on the high CO2 sequestration and storage capacity of various new blue carbon sinks, such as seaweeds, microalgae, coral reefs, and non-vegetated tidal flats, have been continuously reported to the academic community recently. The possibility of IPCC international accreditation is gradually increasing through scientific verification related to calculations. In this review, the current status and potential value of seaweeds, seagrass fields, and non-vegetated tidal flats, which are sources of blue carbon on the east coast, are discussed. This paper confirms that seaweed resources are the most effective NbS in the East Sea of Korea. In addition, we would like to suggest the direction of research and development (R&D) and utilization so that new blue carbon sinks can obtain international IPCC certification in the near future.