• Title/Summary/Keyword: Coastal inundation

Search Result 125, Processing Time 0.028 seconds

Characteristics of Tsunami Propagation through the Korean Straits and Statistical Description of Tsunami Wave Height (대한해협에서의 지진해일 전파특성과 지진해일고의 확률적 기술)

  • Cho, Yong-Jun;Lee, Jae-Il
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.18 no.4
    • /
    • pp.269-282
    • /
    • 2006
  • We numerically studied tsunami propagation characteristics through Korean Straits based on nonlinear shallow water equation, a robust wave driver of the near field tsunamis. Tsunamis are presumed to be generated by the earthquake in Tsuhima-Koto fault line. The magnitude of earthquake is chosen to be 7.5 on Richter scale, which corresponds to most plausible one around Korean peninsula. It turns out that it takes only 60 minutes for leading waves to cross Korean straits, which supports recently raised concerns at warning system might be malfunctioned due to the lack of evacuation time. We also numerically obtained the probability of tsunami inundation of various levels, usually referred as tsunami hazard, along southern coastal area of Korean Peninsula based on simple seismological and Kajiura (1963)'s hydrodynamic model due to tsunami-generative earthquake in Tsuhima-Koto fault line. Using observed data at Akita and Fukaura during Okushiri tsunami in 1993, we verified probabilistic model of tsunami height proposed in this study. We believe this inundation probability of various levels to give valuable information for the amendment of current building code of coastal disaster prevention system to tame tsunami attack.

Safety analysis of nuclear containment vessels subjected to strong earthquakes and subsequent tsunamis

  • Lin, Feng;Li, Hongzhi
    • Nuclear Engineering and Technology
    • /
    • v.49 no.5
    • /
    • pp.1079-1089
    • /
    • 2017
  • Nuclear power plants under expansion and under construction in China are mostly located in coastal areas, which means they are at risk of suffering strong earthquakes and subsequent tsunamis. This paper presents a safety analysis for a new reinforced concrete containment vessel in such events. A finite element method-based model was built, verified, and first used to understand the seismic performance of the containment vessel under earthquakes with increased intensities. Then, the model was used to assess the safety performance of the containment vessel subject to an earthquake with peak ground acceleration (PGA) of 0.56g and subsequent tsunamis with increased inundation depths, similar to the 2011 Great East earthquake and tsunami in Japan. Results indicated that the containment vessel reached Limit State I (concrete cracking) and Limit State II (concrete crushing) when the PGAs were in a range of 0.8-1.1g and 1.2-1.7g, respectively. The containment vessel reached Limit State I with a tsunami inundation depth of 10 m after suffering an earthquake with a PGA of 0.56g. A site-specific hazard assessment was conducted to consider the likelihood of tsunami sources.

A Study on Variation of Land-use in River Area caused by Levee Construction (제방 축조에 따른 하천공간 토지이용 변화에 관한 연구)

  • Shin, Hyoung Sub;Hong, Il;Kim, Ji-Sung;Kim, Kyu Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.4
    • /
    • pp.2419-2427
    • /
    • 2014
  • This paper defines the hydro-geomorphological river area to estimate the change of the river function before/after levee construction, and proposes the methodology that calculates the river area by using GIS. The boundary of river area is determined by the 100-year potential flood inundation area without the levee effect of the flood protection. Firstly, 1918' land-use map was digitized and the changes were analyzed by comparing with 2007' digitized map. The result shows that urban/farmland zone in Mankyung river area were increased by 0.4%/11.6% and bare ground was decreased by 10.0% so that the effective use of floodplain due to levee construction leaded to better productivity, but the decrease of the environment function of the river was predicted as result of the reduction of the river area.

Development of a Web Service based GIS-Enabled Storm-surge Visualization System (웹 서비스 기반 GIS 연동 폭풍.해일 시각화 시스템 개발)

  • Kim, Jin-Ah;Park, Jin-Ah;Park, K.S.;Kwon, Jae-Il
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.14 no.9
    • /
    • pp.841-849
    • /
    • 2008
  • Natural disaster such as inundation due to the typhoon induced storm-surge has inflicted severe losses on the coastal area. The problem of global warming and sea surface rising has issued and thus influences the increase of frequency and potential power of storm-surge. What we can do is to make intelligent effort to predict and prevent the losses through the early warning and prevention activity from the accurate prediction and forecasting about the time-varying storm-surge height and its arriving time resulted from the numerical simulation with sea observations. In this paper, we developed the web service based GIS-Enabled storm-surge visualization system to predict and prevent the storm-surge disasters. Moreover. for more accurate topography around coastal area and fine-grid storm-surge numerical model, we have accomplished GIS-based coastal mapping through LiDAR measurement.

Typhoon Surge Simulation on the West Coast Incorporating Asymmetric Vortex and Wave Model on a Fine Finite Element Grid (상세유한요소격자에서 비대칭 경도풍과 파랑모형이 고려된 서해안의 태풍해일모의)

  • Suh, Seung-Won;Kim, Hyeon-Jeong
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.24 no.3
    • /
    • pp.166-178
    • /
    • 2012
  • In order to simulate storm surge for the west coast, complex physics of asymmetrical typhoon wind vortex, tide and wave are simultaneously incorporated on a fine finite element mesh extended to the North Western Pacific sea. Asymmetrical vortex based on maximum wind radii for each quadrant by JTWC's best tracks are input in pADCIRC and wave stress is accounted by dynamic coupling with unSWAN. Computations performed on parallel clusters. In hindcasting simulation of typhoon Kompasu(1007), model results of wave characteristic are very close with the observed data at Ieo island, and sea surface records at major tidal stations are reproduced with satisfaction when typhoon is approaching to the coast. It is obvious that increasing of local storm surges can be found by introducing asymmetrical vortex. Thus this approach can be satisfactorily applied in coastal hazard management against to storm surge inundation on low level area and major harbor facilities.

Frequency Analysis of Extreme High Water Level at Mokpo Harbor Considering Tidal Environment Changes (조석환경변화를 고려한 목포항의 고극조위 산정)

  • 강주환;문승록
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.12 no.4
    • /
    • pp.203-209
    • /
    • 2000
  • Mokpo coastal zone suffers from increase of tidal amplitude by the reclamation projects of Youngsan River Scadike, Youngam and Keumho Seawalls, resulting inundation oflower lands. Tidal records at Mokpo harbor show jumps just after each construction not only in the mcan high water level but also in extreme one. Thus the design water levels must be newly estimated by a frequency analysis with the data of period after the last construction. But this period is at most 6 years yet, which restrains the normal frequency analysis. In this paper, new approach of converting the past data to the present one by a numerical model is proposed. Converted 32 years and observed 6 years data enables normal frequency analysis.

  • PDF

THE ROLE OF SATELLITE REMOTE SENSING TO DETECT AND ASSESS THE DAMAGE OF TSUNAMI DISASTER

  • Siripong, Absornsuda
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.827-830
    • /
    • 2006
  • The tsunami from the megathrust earthquake magnitude 9.3 on 26 December 2004 is the largest tsunami the world has known in over forty years. This tsunami destructively attacked 13 countries around Indian Ocean with at least 230,000 fatalities, displaced people 2,089,883 and 1.5 million people who lost their livelihoods. The ratio of women and children killed to men is 3 to 1. The total damage costs US$ 10.73 billion and rebuilding costs US$ 10.375 billion. The tsunami's death toll could have been drastically reduced, if the warning was disseminated quickly and effectively to the coastal dwellers along the Indian Ocean rim. With a warning system in Indian Ocean similar to that operating in the Pacific Ocean since 1965, it would have been possible to warn, evacuate and save countless lives. The best tribute we can pay to all who perished or suffered in this disaster is to heed its powerful lessons. UNESCO/IOC have put their tremendous effort on better disaster preparedness, functional early warning systems and realistic arrangements to cope with tsunami disaster. They organized ICG/IOTWS (Indian Ocean Tsunami Warning System) and the third of this meeting is held in Bali, Indonesia during $31^{st}$ July to $4^{th}$ August 2006. A US$ 53 million interim warning system using tidal gauges and undersea sensors is nearing completion in the Indian Ocean with the assistance from IOC. The tsunami warning depends strictly on an early detection of a tsunami (wave) perturbation in the ocean itself. It does not and cannot depend on seismological information alone. In the case of 26 December 2004 tsunami when the NOAA/PMEL DART (Deep-ocean Assessment and Reporting of Tsunami) system has not been deployed, the initialized input of sea surface perturbation for the MOST (Method Of Splitting Tsunami) model was from the tsunamigenic-earthquake source model. It is the first time that the satellite altimeters can detect the signal of tsunami wave in the Bay of Bengal and was used to validate the output from the MOST model in the deep ocean. In the case of Thailand, the inundation part of the MOST model was run from Sumatra 2004 for inundation mapping purposes. The medium and high resolution satellite data were used to assess the degree of the damage from Indian Ocean tsunami of 2004 with NDVI classification at 6 provinces on the Andaman seacoast of Thailand. With the tide-gauge station data, run-up surveys, bathymetry and coastal topography data and land-use classification from satellite imageries, we can use these information for coastal zone management on evacuation plan and construction code.

  • PDF

Analysis of Tsunami Resonance and Impact in Coastal Waters

  • Lee, Joong-Woo;Kim, Kyu-Kwang;Yamazaki, Yoshiki;Cheung, Kwok Fai;Yamanaka, Ryoichi
    • Journal of Navigation and Port Research
    • /
    • v.35 no.9
    • /
    • pp.755-763
    • /
    • 2011
  • Recently, extreme tsunami waves generated by submarine earthquake have caused tremendous damages to the coastal cities and ports. Strong seiche oscillations and runups are observed in specific sea areas around the world. Although no frequent impacts to the coast of Korean peninsula, there exist some important events in the east of Korea in the past. This study focuses on two historical events and recalculate with different fault and rupture mechanism for prediction considering the recent trend of submarine earthquake. The present study of the 1983 Akita tsunamis demonstrates the multi-scale resonance along continental coasts. Together with the Nankai tsunami for inland sea, we have confirmed the inland sea resonance surrounded by islands in defining the impact along the coast. Coherence and wavelet analyses for deducing a predominant period and time frequency are useful in reasoning the inundation. The resonance modes, which are largely independent of the tsunami source, allow identification of at-risk communities and infrastructure for mitigation of tsunami hazards. Furthermore, understanding of the resonance and the predicted runups for the site of power plant and industrial complex in the east coast of Korea would allow better preparation for the future disasters.

Inundation Simulation of Underground Space using Critical Dry Depth Scheme (임계 마름 수심기법을 이용한 지하공간 침수 모의)

  • Rhee, Dong Sop;Kim, Hyung-Jun;Song, Chang Geun
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.6
    • /
    • pp.63-69
    • /
    • 2015
  • In this study, a 2D hydrodynamic model equipped with critical dry depth scheme was developed to reproduce the flow over staircase. The channel geometry of hydraulic experiment conducted by Ishigaki et al. was generated in the computational space, and the developed model was validated against flow properties such as discharge, velocity and momentum. In addition, the water surface profile and the velocity distribution evolved in flow over two layers staircases were analyzed. When the initial water depth at the upper floor was 0.3 m, the maximum velocity at lower floor was 4.2 m/s, and the maximum momentum was $1.2m^3/s^2$, and its conversion to force per unit width was 1.2 kN/m. This value was equivalent to the hydrostatic force with 50 cm water depth, and evacuation became difficult, as proposed by Ishigaki et al. For the flow over staircases connecting two layers, the maximum run-up height in flat part connecting two layers was approximately two times higher than the initial water depth in upper floor, and the rapid shock wave with sharp front and long tail was propagated.

Computation of a Tsunami at Mindoro, Philippine in 1994 (1994년 필리핀 민도로섬의 쓰나미 산정)

  • Choi, Byung-Ho;Kim, Duk-Gu;Roh, Sang-Jun;Lee, Ho-Jun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.9 no.3
    • /
    • pp.140-154
    • /
    • 1997
  • On November 15, 1994 at 03:17 local time, an earthquake of surface magnitude (M$_{s}$) 7.0 occurred on the northern coast of the Mindoro in Philippine. A major tsunami was generated by this earthquake, extremely large tsunami waves engulfed the Mindoro and the Verde islands. This tsunami caused tremendous casualities and damage. The tsunami propagated to the Luzon island and felt at the Batangas after 10 minutes. The present paper intends to understand the propagation and inundation this tsunami with the aid of numerical computation model and computer graphic aided video animation.n.

  • PDF