• Title/Summary/Keyword: Coastal current mapping

Search Result 11, Processing Time 0.054 seconds

The Methods of Coastal Disaster Mapping Using Digital Map (수치지도를 이용한 연안재해지도 작성 방안)

  • Jeong, Jong-Chul
    • Journal of Environmental Impact Assessment
    • /
    • v.16 no.5
    • /
    • pp.373-379
    • /
    • 2007
  • Natural hazards such as typhoon, flood, landslide affect both coastal and inland areas more often according to increasement of severe and unusual weather. To provide adequate coastal disaster mitigation strategies, coastal disaster prevention system using GIS is very useful. Application methods of digital map on this issue was discussed in this study. For developing of coastal disaster prevention system, the data structures related to disaster monitoring is needed to be revised for interdisciplinary framework. To improve the current coastal disaster mapping methods, GIS based new model for coastal disaster mapping was suggested. In this study, coastal GIS showed the attribute data and structures of coastal disaster mapping.

Development Needs and Direction of an Ecological Grading System of Korean Tidal Flats (한국 갯벌 생태 등급도의 개발 필요성과 방향)

  • Yoo, Jae-Won;Lee, Chang-Gun;Kho, Byung-Seol;Lee, Si-Wan;Han, Dong-Uk;Choi, Keun-Hyung;Kim, Chang-Soo;Hong, Jae-Sang
    • Ocean and Polar Research
    • /
    • v.32 no.2
    • /
    • pp.137-144
    • /
    • 2010
  • There is a host of habitat assessment systems available to evaluate and grade tidal flat ecosystems in Korea. Nevertheless, we recognize the need to develop a better ecological scheme to improve reliability and accuracy given the importance of using an empirical approach in assigning grades to indicators and the limitation of current systems which evaluate tidal flats on a regional basis. A preferable system would be one that enables habitat mapping within a tidal flat, provides a diagnosis of ecological stress/health, has a high level of ecological relevance, communicability, and statistical robustness, and enables evaluation of diverse habitats within a tidal flat. The following points should be considered in framing such a system. Indicators should discriminate habitat quality into five to seven grades accomodating diverse characteristics and conservation value of a habitat, and the grading should be made from frequency distribution of indicators based on nationwide data.We suggest the following tasks in crafting such a system: i) The decision on selection of indicators should be made based on accuracy of assessment and practical application; ii) effects of physical habitat conditions on variability of indicators should be reflected; and, iii) further works on stress/health indicators should be addressed for adopting a multiple-indicator approach which reduces misdiagnosis.

Implementation of Digital Image Processing for Coastline Extraction from Synthetic Aperture Radar Imagery

  • Lee, Dong-Cheon;Seo, Su-Young;Lee, Im-Pyeong;Kwon, Jay-Hyoun;Tuell, Grady H.
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.25 no.6_1
    • /
    • pp.517-528
    • /
    • 2007
  • Extraction of the coastal boundary is important because the boundary serves as a reference in the demarcation of maritime zones such as territorial sea, contiguous zone, and exclusive economic zone. Accurate nautical charts also depend on well established, accurate, consistent, and current coastline delineation. However, to identify the precise location of the coastal boundary is a difficult task due to tidal and wave motions. This paper presents an efficient way to extract coastlines by applying digital image processing techniques to Synthetic Aperture Radar (SAR) imagery. Over the past few years, satellite-based SAR and high resolution airborne SAR images have become available, and SAR has been evaluated as a new mapping technology. Using remotely sensed data gives benefits in several aspects, especially SAR is largely unaffected by weather constraints, is operational at night time over a large area, and provides high contrast between water and land areas. Various image processing techniques including region growing, texture-based image segmentation, local entropy method, and refinement with image pyramid were implemented to extract the coastline in this study. Finally, the results were compared with existing coastline data derived from aerial photographs.

Current Status of Hyperspectral Data Processing Techniques for Monitoring Coastal Waters (연안해역 모니터링을 위한 초분광영상 처리기법 현황)

  • Kim, Sun-Hwa;Yang, Chan-Su
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.18 no.1
    • /
    • pp.48-63
    • /
    • 2015
  • In this study, we introduce various hyperspectral data processing techniques for the monitoring of shallow and coastal waters to enlarge the application range and to improve the accuracy of the end results in Korea. Unlike land, more accurate atmospheric correction is needed in coastal region showing relatively low reflectance in visible wavelengths. Sun-glint which occurs due to a geometry of sun-sea surface-sensor is another issue for the data processing in the ocean application of hyperspectal imagery. After the preprocessing of the hyperspectral data, a semi-analytical algorithm based on a radiative transfer model and a spectral library can be used for bathymetry mapping in coastal area, type classification and status monitoring of benthos or substrate classification. In general, semi-analytical algorithms using spectral information obtained from hyperspectral imagey shows higher accuracy than an empirical method using multispectral data. The water depth and quality are constraint factors in the ocean application of optical data. Although a radiative transfer model suggests the theoretical limit of about 25m in depth for bathymetry and bottom classification, hyperspectral data have been used practically at depths of up to 10 m in shallow and coastal waters. It means we have to focus on the maximum depth of water and water quality conditions that affect the coastal applicability of hyperspectral data, and to define the spectral library of coastal waters to classify the types of benthos and substrates.

APPLICATION OF HF COASTAL OCEAN RADAR TO TSUNAMI OBSERVATIONS

  • Heron, Mal;Prytz, Arnstein;Heron, Scott;Helzel, Thomas;Schlick, Thomas;Greenslade, Diana;Schulz, Eric
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.34-37
    • /
    • 2006
  • When tsunami waves propagate across open ocean they are steered by Coriolis force and refraction due to gentle gradients in the bathymetry on scales longer than the wavelength. When the wave encounters steep gradients at the edges of continental shelves and at the coast, the wave becomes non-linear and conservation of momentum produces squirts of surface current at the head of submerged canyons and in coastal bays. HF coastal ocean radar is well-conditioned to observe the current bursts at the edge of the continental shelf and give a warning of 40 minutes to 2 hours when the shelf is 50-200km wide. The period of tsunami waves is invariant over changes in bathymetry and is in the range 2-30 minutes. Wavelengths for tsunamis (in 500-3000 m depth) are in the range 8.5 to over 200 km and on a shelf where the depth is about 50 m (as in the Great Barrier Reef) the wavelengths are in the range 2.5 - 30 km. It is shown that the phased array HF ocean surface radar being deployed in the Great Barrier Reef (GBR) and operating in a routine way for mapping surface currents, can resolve surface current squirts from tsunamis in the wave period range 20-30 minutes and in the wavelength range greater than about 6 km. There is a trade-off between resolution of surface current speed and time resolution. If the radar is actively managed with automatic intervention during a tsunami alert period (triggered from the global seismic network) then it is estimated that the time resolution of the GBR radar may be reduced to about 2 minutes, which corresponds to a capability to detect tsunamis at the shelf edge in the period range 5-30 minutes. It is estimated that the lower limit of squirt velocity detection at the shelf edge would correspond to a tsunami with water elevation of less than 5 cm in the open ocean. This means that the GBR HF radar is well-conditioned for use as a monitor of small and medium scale tsunamis, and has the potential to contribute to the understanding of tsunami genesis research.

  • PDF

An Overview of Operations and Applications of HF Ocean Radar Networks in the Korean Coast (한국연안 고주파 해양레이더망 운영과 활용 개관)

  • Kim, Ho-Kyun;Kim, Jung-Hoon;Son, Young-Tae;Lee, Sang-Ho
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.2_2
    • /
    • pp.351-375
    • /
    • 2018
  • This paper aims to i) introduce the characteristics of HF ocean radar and the major results and information produced by the radar networks in the Korean coasts to the readers, ii) make an up-to-date inventory of the existing radar systems, and iii) share the information related to the radar operating skill and the ocean current data application. The number of ocean radars has been showing a significant growth over the past 20 years, currently deploying more than 44 radars in the Korean coasts. Most of radars are in operation at the present time for the purposes related to the marine safety, tidal current forecast and understanding of ocean current dynamics, mainly depending on the mission of each organization operating radar network. We hope this overview paper may help expand the applicability of the ocean radar to fisheries, leisure activity on the sea, ocean resource management, oil spill response, coastal environment restoration, search and rescue, and vessel detection etc., beyond the level of understanding of tidal and ocean current dynamics. Additionally we hope this paper contributes further to the surveillance activity on our ocean territory by founding a national ocean radar network frame and to the domestic development of ocean radar system including signal processing technology.

Monitoring of the Suspended Sediments Concentration in Gyeonggi-bay Using COMS/GOCI and Landsat ETM+ Images (COMS/GOCI 및 Landsat ETM+ 영상을 활용한 경기만 지역의 부유퇴적물 농 도 변화 모니터링)

  • Eom, Jinah;Lee, Yoon-Kyung;Choi, Jong-Kuk;Moon, Jeong-Eon;Ryu, Joo-Hyung;Won, Joong-Sun
    • Economic and Environmental Geology
    • /
    • v.47 no.1
    • /
    • pp.39-48
    • /
    • 2014
  • In coastal region, estuaries have complex environments where dissolved and particulate matters are mixed with marine water and substances. Suspended sediment (SS) dynamics in coastal water, in particular, plays a major role in erosion/deposition processes, biomass primary production and the transport of nutrients, micropollutants, heavy metals, etc. Temporal variation in suspended sediment concentration (SSC) can be used to explain erosion/sedimentation patterns within coastal zones. Remotely sensed data can be an efficient tool for mapping SS in coastal waters. In this study, we analyzed the variation in SSC in coastal water using the Geostationary Ocean Color Imager (GOCI) and Landsat Enhanced Thematic Mapper Plus (ETM+) in Gyeonggi-bay. Daily variations in GOCI-derived SSC showed low values during ebb time. Current velocity and water level at 9 and 10 am is 37.6, 28.65 $cm{\cdot}s^{-1}$ and -1.23, -0.61 m respectively. Water level has increased to 1.18 m at flood time. In other words, strong current velocity and increased water level affected high SSC value before flood time but SSC decreased after flood time. Also, we compared seasonal SSC with the river discharge from the Han River and the Imjin River. In summer season, river discharge showed high amount, when SSC had high value near the inland. At this time SSC in open sea had low value. In contrast, river discharge amount from inland showed low value in winter season and, consequently, SSC in the open sea had high value because of northwest monsoon.

Intertidal DEM Generation Using Satellite Radar Interferometry (인공위성 레이더 간섭기술을 이용한 조간대 지형도 작성에 관한 연구)

  • Park, Jeong-Won;Choi, Jung-Hyun;Lee, Yoon-Kyung;Won, Joong-Sun
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.1
    • /
    • pp.121-128
    • /
    • 2012
  • High resolution intertidal DEM is a basic material for science research like sedimentation/erosion by ocean current, and is invaluable in a monitoring of environmental changes and practical management of coastal wetland. Since the intertidal zone changes rapidly by the inflow of fluvial debris and tide condition, remote sensing is an effective tool for observing large areas in short time. Although radar interferometry is one of the well-known techniques for generating high resolution DEM, conventional repeat-pass interferometry has difficulty on acquiring enough coherence over tidal flat due to the limited exposure time and the rapid changes in surface condition. In order to overcome these constraints, we tested the feasibility of radar interferometry using Cosmo-SkyMed tandem-like one-day data and ERS-ENVISAT cross tandem data with very short revisit period compared to the conventional repeat pass data. Small temporal baseline combined with long perpendicular baseline allowed high coherence over most of the exposed tidal flat surface in both observations. However the interferometric phases acquired from Cosmo-SkyMed data suffer from atmospheric delay and changes in soil moisture contents. The ERS-ENVISAT pair, on the other hand, provides nice phase which agree well with the real topography, because the atmospheric effect in 30-minute gap is almost same to both images so that they are cancelled out in the interferometric process. Thus, the cross interferometry with very small temporal baseline and large perpendicular baseline is one of the most reliable solutions for the intertidal DEM construction which requires very accurate mapping of the elevation.

Seagrasses in Northern Chinese Seas: Historical Declines and Case Study of the Status (중국 북부 연안의 잘피: 역사적 감소추세 및 현황에 대한 사례)

  • Zhang, Xuelei;Li, Yan;Liu, Ping;Sun, Ping;Wang, Xiao;Fan, Shiliang;Xu, Qinzeng
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.13 no.4
    • /
    • pp.305-312
    • /
    • 2010
  • Seagrass beds are a type of coastal wetland with many ecosystem services and precious economic values. Seagrass meadows used to be widespread along the coasts in northern Chinese seas, yet they have long been overlooked and lack devoted study on their history and status. This paper firstly reveals, by synthesis of information on composition of seagrass species and their distribution, that the seagrasses in this region have experienced considerable declines, both in terms of distribution and biomass, from the earliest record to present days. Then, a case study at the seagrass bed of Chudao is described to show the status of representative seagrass meadows. The results indicate that the environmental condition is good, seagrasses are in recovery, the planktoners are healthy and rich fishery resources and the mammal finless porpoise are associated with the seagrass bed. The cause(s) of historical seagrass decline and current conditions are also discussed, and future recommendations on seagrass protection and mapping are suggested.

The Research on the Management Plan of Geological Heritage in Korea using GIS (지리정보를 활용한 한국의 지질유산 정보화 구축 및 관리방안 제시)

  • Lee, SooJae;Lee, MoungJin
    • Journal of Environmental Policy
    • /
    • v.14 no.4
    • /
    • pp.103-123
    • /
    • 2015
  • To provide effective management policy of geo-heritages, concept of Korean geo-heritage has been organized based on geo-diversity, geo-conservation, geo-tourism, and earth-heritage. In addition, current status of geo-heritage in Korea has been grasped, and categorized. In case GPS (Global Positioning System) coordinates exist, spatial information was constructed as GIS (Geographic Information System). Geo-heritages were classified into a total of six categories of natural monument, scenic site, coastal sand-dune, natural cave, world nature heritage, and other types of geo-heritage. By mapping 991 geo-heritages scattered nationwide using geographical information, all statuses can now be readily identified and enable the analysis of the distribution tendencies and correlation with topography. This study was aimed at searching the political connection based on quantitatively organized and analyzed geo-heritages, which have not been mapped thus far. In addition, this study organized data that have existed only in literature, and presented example verification. Moreover, these can be used as guidelines for the future search, discovery, registration and management of geo-heritage. If additional geo-heritages are discovered in field studies or with satellite images, then more correlations may be identified and help facilitate the research on geo-heritages management plans.

  • PDF